
Near-Uniform Sampling of Combinatorial Spaces
Using XOR Constraints

Carla P. Gomes Ashish Sabharwal Bart Selman
Department of Computer Science

Cornell University, Ithaca NY 14853-7501, USA
{gomes,sabhar,selman }@cs.cornell.edu ∗

Abstract
We propose a new technique for sampling the solutions of combinatorial prob-
lems in a near-uniform manner. We focus on problems specified as a Boolean for-
mula, i.e., on SAT instances. Sampling for SAT problems has been shown to have
interesting connections with probabilistic reasoning, making practical sampling
algorithms for SAT highly desirable. The best current approaches are based on
Markov Chain Monte Carlo methods, which have some practical limitations. Our
approach exploits combinatorial properties of random parity (XOR) constraints to
prune away solutions near-uniformly. The final sample is identified amongst the
remaining ones using a state-of-the-art SAT solver. The resulting sampling dis-
tribution is provably arbitrarily close to uniform. Our experiments show that our
technique achieves a significantly better sampling quality than the best alternative.

1 Introduction

We present a new method,XORSample, for uniformly sampling from the solutions of hard combi-
natorial problems. Although our method is quite general, we focus on problems expressed in the
Boolean Satisfiability (SAT) framework. Our work is motivated by the fact that efficient sampling
for SAT can open up a range of interesting applications in probabilistic reasoning [6, 7, 8, 9, 10, 11].
There has also been a growing interest in combining logical and probabilistic constraints as in the
work of Koller, Russell, Domingos, Bacchus, Halpern, Darwiche, and many others (see e.g. sta-
tistical relational learning and Markov logic networks [1]), and a recently proposed Markov logic
system for this task uses efficient SAT sampling as its core reasoning mechanism [2].

Typical approaches for sampling from combinatorial spaces are based on Markov Chain Monte
Carlo (MCMC) methods, such as the Metropolis algorithm and simulated annealing [3, 4, 5]. These
methods construct a Markov chain with a predefined stationary distribution. One can draw samples
from the stationary distribution by running the Markov chain for a sufficiently long time. Unfortu-
nately, on many combinatorial problems, the time taken by the Markov chain to reach its stationary
distribution scales exponentially with the problem size.

MCMC methods can also be used to find (globally optimal) solutions to combinatorial problems. For
example, simulated annealing (SA) uses the Boltzmann distribution as the stationary distribution.
By lowering the temperature parameter to near zero, the distribution becomes highly concentrated
around the minimum energy states, which correspond to the solutions of the combinatorial problem
under consideration. SA has been successfully applied to a number of combinatorial search prob-
lems. However, many combinatorial problems, especially those with intricate constraint structure,
are beyond the reach of SA and related MCMC methods. Not only does problem structure make
reaching the stationary distribution prohibitively long, even reaching a single (optimal) solution is
often infeasible. Alternative combinatorial search techniques have been developed that are much
more effective at finding solutions. These methods generally exploit clever search space pruning

∗This work was supported by the Intelligent Information Systems Institute (IISI) at Cornell University
(AFOSR grant F49620-01-1-0076) and DARPA (REAL grant FA8750-04-2-0216).

techniques, which quickly focus the search on small, but promising, parts of the overall combina-
torial space. As a consequence, these techniques tend to be highly biased, and sample the set of
solutions in an extremely non-uniform way. (Many are in fact deterministic and will only return one
particular solution.)

In this paper, we introduce a general probabilistic technique for obtaining near-uniform samples
from the set of all (globally optimal) solutions of combinatorial problems. Our method can use any
state-of-the-art specialized combinatorial solver as a subroutine, without requiring any modifications
to the solver. The solver can even be deterministic. Most importantly, the quality of our sampling
method is not affected by the possible bias of the underlying specialized solver — all we need is
a solver that is good at findingsomesolution or proving that none exists. We provide theoretical
guarantees for the sampling quality of our approach. We also demonstrate the practical feasibility
of our approach by sampling near-uniformly from instances of hard combinatorial problems.

As mentioned earlier, to make our discussion more concrete, we will discuss our method in the con-
text of SAT. In the SAT problem, we have a set of logical constraints on a set of Boolean (True/False)
variables. The challenge is to find a setting of the variables such that all logical constraints are sat-
isfied. SAT is the prototypical NP-complete problem, and quite likely the most widely studied
combinatorial problem in computer science. There have been dramatic advances in recent years in
the state-of-the-art of SAT solvers [e.g.12, 13, 14]. Current solvers are able to solve problems with
millions of variables and constraints. Many practical combinatorial problems can be effectively
translated into SAT. As a consequence, one of the current most successful approaches to solving
hard computational problems, arising in,e.g., hardware and software verification and planning and
scheduling, is to first translate the problem into SAT, and then use a state-of-the-art SAT solver to
find a solution (or show that it does not exist). As stated above, these specialized solvers derive much
of their power from quickly focusing their search on a very small part of the combinatorial space.
Many SAT solvers are deterministic, but even when the solvers incorporate some randomization,
solutions will be sampled in a highly non-uniform manner.

The central idea behind our approach can be summarized as follows. Assume for simplicity that
our original SAT instance onn Boolean variables has 2s solutions or satisfying assignments. How
can we sample uniformly at random from the set of solutions? We add special randomly generated
logical constraints to our SAT problem. Each random constraint is constructed in such a way that
it rules out any given truth assignment exactly with probability1/2. Therefore, in expectation, after
addings such constraints, we will have a SAT instance with exactly one solution.1 We then use a
SAT solver to find the remaining satisfying assignment and output this as our first sample. We can
repeat this process with a new set ofs randomly generated constraints and in this way obtain another
random solution. Note that to output each sample, we can use whatever off-the-shelf SAT solver is
available, because all it needs to do is find the single remaining assignment.2 The randomization in
the added constraints will guarantee that the assignment is selected uniformly at random.

How do we implement this approach? For our added constraints, we use randomly generated par-
ity or “exclusive-or” (XOR) constraints. In recent work, we introducedXOR constraints for the
problem of counting the number of solutions usingMBound [15]. Although the building blocks of
MBoundandXORSampleare the same, this work relies much more heavily on the properties ofXOR
constraints, namely, pairwise and even 3-wise independence. As we will discuss below, anXOR con-
straint eliminates any given truth assignment with probability1/2, and therefore, in expectation, cuts
the set of satisfying assignments in half. For this expected behavior to happen often, the elimina-
tion of each assignment should ideally be fully independent of the elimination of other assignments.
Unfortunately, as far as is known, there are no compact (polynomial size) logical constraints that
can achieve such complete independence. However,XOR constraints guarantee at least pairwise
independence, i.e., if we know that anXOR constraintC eliminates assignmentσ1, this provides no
information as to whetherC will remove any another assignmentσ2. Remarkably, as we will see,
such pairwise independence already leads to near-uniform sampling.

Our sampling approach is inspired by earlier work in computational complexity theory by Valiant
and Vazirani [16], who considered the question whether having one or more assignments affects

1 Of course, we don’t know the true value ofs. In practice, we use a binary style search to obtain a rough
estimate. As we will see, our algorithms work correctly even with over- and under-estimates fors.

2 The practical feasibility of our approach exploits the fact that current SAT solvers are very effective in
finding such truth assignments in many real-world domains.

2

the hardness of combinatorial problems. They showed that, in essence, the number of solutions
should not affect the hardness of the problem instances in the worst case [16]. This was received as
a negative result because it shows that finding a solution to a Unique SAT problem (a SAT instance
that is guaranteed to have at most one solution) is not any easier than finding a solution to an arbitrary
SAT instance. Our sampling strategy turns this line of research into a positive direction by showing
how a standard SAT solver, tailored to finding just one solution of a SAT problem, can now be used
to sample near-uniformly from the set of solutions of an arbitrary SAT problem.

In addition to introducingXORSampleand deriving theoretical guarantees on the quality of the sam-
ples it generates, we also provide an empirical validation of our approach. One question that arises
is whether the state-of-the-art SAT solvers will perform well on problem instances with addedXOR
(or parity) constraints. Fortunately, as our experiments show, a careful addition of such constraints
does generally not degrade the performance of the solvers. In fact, the addition ofXOR constraints
can be beneficial since the constraints lead to additional propagation that can be exploited by the
solvers.3 Our experiments show that we can effectively sample near-uniformly from hard practical
combinatorial problems. In comparison with the best current alternative method on such instances,
our sampling quality is substantially better.

2 Preliminaries

For the rest of this paper, fix the set of propositional variables in all formulas to beV, |V| = n. A
variable assignmentσ : V→{0,1} is a function that assigns a value in{0,1} to each variable inV.
We may think of the value 0 asFALSE and the value 1 asTRUE. We will often abuse notation and
write σ(i) for valuations of entitiesi 6∈V when the intended meaning is either already defined or is
clear from the context. In particular,σ(1) = 1 andσ(0) = 0. Whenσ(i) = 1, we say thatσ satisfies
i. Forx∈V, ¬x denotes the correspondingnegatedvariable;σ(¬x) = 1−σ(x). Let F be a formula
over variablesV. σ(F) denotes the valuation ofF underσ . If σ satisfiesF , i.e.,σ(F) = 1, thenσ

is amodel, solution, or satisfying assignmentfor F . Our goal in this paper is tosample uniformly
from the set of all solutions of a given formulaF .

An XOR constraint Dover variablesV is the logical “xor” or parity of a subset ofV∪{1}; σ satisfies
D if it satisfies anodd numberof elements inD. The value 1 allows us to express even parity. For
instance,D = {a,b,c,1} represents the xor constrainta⊕b⊕ c⊕1, which isTRUE when an even
number ofa,b,c areTRUE. Note that it suffices to use only positive variables. E.g.,¬a⊕b⊕¬c
and¬a⊕ b are equivalent toD = {a,b,c} andD = {a,b,1}, respectively. Our focus will be on
formulas which are a logical conjunction of a formula in Conjunctive Normal Form (CNF) and some
XOR constraints. In all our experiments,XOR constraints are translated into CNF using additional
variables so that the full formula can be fed directly to standard (CNF-based) SAT solvers.

We will need basic concepts from linear algebra. LetF2 denote the field of two elements, 0 and 1,
andFn

2 the vector space of dimensionn overF. An assignmentσ can be thought of as an element of
Fn

2. Similarly, anXOR constraintD can be seen as a linear constrainta1x1+a2x2+ . . .+anxn+b= 1,
whereai ,b∈ {0,1}, + denotes addition modulo 2 forF2, ai = 1 iff D has variablei, andb = 1 iff
D has the parity constant 1. In this setting, we can talk about linear transformations ofFn

2 as well as
linear independence ofσ ,σ ′ ∈ Fn

2 (see standard texts for details). We will use two properties: every
linear transformation maps the all-zeros vector to itself, and there exists a linear transformation that
maps anyk linearly independent vectors to any otherk linearly independent vectors.

Consider the setX of all XOR constraints overV. Since anXOR constraint is a subset ofV ∪{1},
|X| = 2n+1. Our method requires choosingXOR constraints fromX at random. LetX(n,q) denote
the probability distributionover X defined as follows: select eachv∈ V independently at random
with probabilityq and include the constant 1 independently with probability1/2. This producesXORs
of average lengthnq. In particular, note that every two complementaryXOR constraints involving
the same subset ofV (e.g.,c⊕d andc⊕d⊕1) are chosen with the same probability irrespective of
q. Such complementaryXOR constraints have the simple but useful property that any assignmentσ

satisfies exactly one of them. Finally, when the distributionX(n,1/2) is used, everyXOR constraint
in X is chosen with probability 2−(n+1).

3 Note that there are certain classes of structured instances based on parity constraints that are designed to
be hard for SAT solvers [17]. Our augmented problem instances appear to behave quite differently from these
specially constructed instances because of the interaction between the constraints in the original instance and
the added random parity constraints.

3

We will be interested in the random variables which are the sum of indicator random variables:
Y = ∑σ Yσ . Linearity of expectation says thatE [Y] = ∑σ E [Yσ]. When variousYσ arepairwise
independent, i.e., knowingYσ2 tells us nothing aboutYσ1, even variance behaves linearly: Var[Y] =
∑σ Var[Yσ]. We will also needconditional probabilities. Here, for a random eventX, linearity of
conditional expectation says thatE [Y | X] = ∑σ E [Yσ | X]. LetX =Yσ0. When variousYσ are3-wise
independent, i.e., knowingYσ2 andYσ3 tells us nothing aboutYσ1, evenconditional variance behaves
linearly: Var

[
Y |Yσ0

]
= ∑σ Var

[
Yσ |Yσ0

]
. This will be key to the analysis of our second algorithm.

3 Sampling usingXOR constraints

In this section, we describe and analyze two randomized algorithms,XORSampleandXORSample’ ,
for sampling solutions of a given Boolean formulaF near-uniformly using streamlining with random
XOR constraints. Both algorithms are parameterized by two quantities: a positive integers and a
real numberq ∈ (0,1), wheres is the number ofXORs added toF andX(n,q) is the distribution
from which they are drawn. These parameters determine the degree of uniformity achieved by the
algorithms, which we formalize as Theorems1 and2. The first algorithm,XORSample, uses a SAT
solver as a subroutine on the randomly streamlined formula. It repeatedly performs the streamlining
process until the resulting formula has a unique solution. Whens is chosen appropriately, it takes
XORSamplea small number of iterations (on average) to successfully produce a sample. The second
algorithm,XORSample’ , is non-iterative. Heres is chosen to be relatively small so that a moderate
number of solutions survive.XORSample’ then uses stronger subroutines, namely a SAT model
counter and a model selector, to output one of the surviving solutions uniformly at random.

3.1 XOR-based sampling using SAT solvers:XORSample

Let F be a formula overn variables, andq ands be the parameters ofXORSample. The algorithm
works by adding toF , in each iteration,s randomXOR constraintsQs drawn independently from the
distributionX(n,q). This generates a streamlined formulaFq

s whose solutions (called thesurviving
solutions) are a subset of the solutions ofF . If there is a unique surviving solutionσ , XORSample
outputsσ and stops. Otherwise, it discardsQs andFq

s , and iterates the process (rejection sampling).
The check for uniqueness ofσ is done by adding the negation ofσ as a constraint toFq

s and testing
whether the resulting formula is still satisfiable. See Algorithm1 for a full description.

Params: q∈ (0,1), a positive integers
Input : A CNF formulaF
Output : A solution ofF
begin

iterationSuccess f ul← FALSE
while iterationSuccess f ul= FALSE do

Qs←{s random constraints independently drawn fromX(n,q)}
Fq

s ← F ∪Qs // Add s random X O R constraints to F
result← SATSolve(Fq

s) // Solve using a SAT solver
if result= TRUE then

σ ← solution returned bySATSolve (Fq
s)

F ′← Fq
s ∪{σ̄} // Remove σ from the solution set

result′← SATSolve(F ′)
if result′ = FALSE then

iterationSuccess f ul= TRUE
return σ // Output σ ; it is the unique solution of Fq

s

end
Algorithm 1 : XORSample, sampling solutions withXORs using a SAT solver

We now analyze how uniform the samples produced byXORSampleare. For the rest of this section,
fix q = 1/2 . Let F be satisfiable and have exactly 2s∗ solutions;s∗ ∈ [0,n]. Ideally, we would like
each solutionσ of F to be sampled with probability 2−s∗ . Let pone,s(σ) be the probability that
XORSampleoutputsσ in one iteration. This is typically much lower than 2−s∗ , which is accounted
for by rejection sampling. Nonetheless, we will show that whens is larger thans∗, the variation in
pone,s(σ) over differentσ is small. Letps(σ) be the overall probability thatXORSampleoutputsσ .
This, we will show, is very close to 2−s∗ , where “closeness” is formalized as being within a factor
of c(α) which approaches 1 very fast. The proof closely follows the argument used by Valiant and

4

Vazirani [16] in their complexity theory work on unique satisfiability. However, we give a different,
non-combinatorial argument for the pairwise independence property ofXORs needed in the proof,
relying on linear algebra. This approach is insightful and will come handy in Section3.2. We
describe the main idea below, deferring details to Appendix.
Lemma 1. Let α > 0,c(α) = 1−2−α , and s= s∗+α. Then c(α)2−s < pone,s(σ) ≤ 2−s.

Proof sketch.We first prove the upper bound onpone,s(σ). Recall that for any two complementary
XORs (e.g.c⊕d andc⊕d⊕1), σ satisfies exactly oneXOR. Hence, the probability thatσ satisfies
anXOR chosen randomly from the distributionX(n,q) is 1/2 . By independence of thes XORs in Qs
in XORSample, σ survives with probability exactly 2−s, giving the desired upper bound onpone,s(σ).

For the lower bound, we resort to pairwise independence. Letσ 6= σ ′ be two solutions ofF . Let
D be anXOR chosen randomly fromX(n,1/2). We use linear algebra arguments to show that the
probability thatσ(D) = 1 (i.e., σ satisfiesD) is independent of the probability thatσ ′(D) = 1.
Recall the interpretation of variable assignments andXOR constraints in the vector spaceFn

2 (cf.
Section2). First suppose thatσ andσ ′ are linearly dependent. InFn

2, this can happen only if exactly
one ofσ andσ ′ is the all-zeros vector. Supposeσ = (0,0, . . . ,0) andσ ′ is non-zero. Perform a linear
transformation onFn

2 so thatσ ′ = (1,0, . . . ,0). LetD be the constrainta1x1+a2x2+ . . .+anxn+b=
1. Then,σ ′(D) = a1 +b andσ(D) = b. Sincea1 is chosen uniformly from{0,1} whenD is drawn
from X(n,1/2), knowinga1 + b gives us no information aboutb, proving independence. A similar
argument works whenσ is non-zero andσ ′ = (0,0, . . . ,0), and also whenσ andσ ′ are linearly
independent to begin with. We skip the details.

This proves thatσ(D) andσ ′(D) are independent whenD is drawn fromX(n,1/2). In particular,
Pr[σ ′(D) = 1 | σ(D) = 1] = 1/2 . This reasoning easily extends tos XORs in Qs and we have that
Pr[σ ′(Qs) = 1 | σ(Qs) = 1] = 2−s. Now,

pone,s(σ) = Pr
[
σ(Qs) = 1 and for all other solutionsσ ′ of F,σ ′(Qs) = 0

]
= Pr[σ(Qs) = 1] ·

(
1−Pr

[
for some solutionσ ′ 6= σ ,σ ′(Qs) = 1 | σ(Qs) = 1

])
.

Evaluating this using the union bound and pairwise independence showspone,s(σ) > c(α) 2−s.

Theorem 1. Let F be a formula with2s∗ solutions. Letα > 0,c(α) = 1−2−α , and s= s∗+α. For
any solutionσ of F, the probability ps(σ) with whichXORSample with parameters q= 1/2 and s
outputsσ satisfies

c(α) 2−s∗ < ps(σ) <
1

c(α)
2−s∗ and min

σ
{ps(σ)} > c(α) max

σ
{ps(σ)} .

Further, the number of iterations needed to produce one sample has a geometric distribution with
expectation between2α and2α/c(α).
Proof. Let p̂ denote the probability thatXORSample finds some unique solution in any single it-
eration. pone,s(σ), as before, is the probability thatσ is the unique surviving solution.ps(σ), the
overall probability of samplingσ , is given by the infinite geometric series

ps(σ) = pone,s(σ)+(1− p̂)pone,s(σ)+(1− p̂)2pone,s(σ)+ . . .

which sums topone,s(σ)/p̂. In particular,ps(σ) is proportional topone,s(σ).

Lemma1 says that for any two solutionsσ1 andσ2 of F , pone,s(σ1) andpone,s(σ2) are strictly within
a factor ofc(α) of each other. By the above discussion,ps(σ1) and ps(σ2) must also be strictly
within a factor ofc(α) of each other, already proving the min vs. max part of the result. Further,
∑σ ps(σ) = 1 because of rejection sampling.

For the first part of the result, suppose for the sake of contradiction thatps(σ0)≤ c(α)2−s∗ for some
σ0, violating the claimed lower bound. By the above argument,ps(σ) is within a factor ofc(α) of
ps(σ0) for everyσ , and would therefore be at most 2−s∗ . This would make∑σ ps(σ) strictly less
than one, a contradiction. A similar argument proves the upper bound onps(σ).

Finally, the number of iterations needed to find a unique solution (thereby successfully producing a
sample) is a geometric random variable with success parameter ˆp = ∑σ pone,s(σ), and has expected
value 1/p̂. Using the bounds onpone,s(σ) from Lemma1 and the fact that the unique survival of each
of the 2s∗ solutionsσ are disjoint events, we have ˆp≤ 2s∗2−s = 2−α andp̂> 2s∗c(α)2−s = c(α)2−α .
This proves the claimed bounds on the expected number of iterations, 1/p̂.

5

3.2 XOR-based sampling using model counters and selectors:XORSample’

We now discuss our second parameterized algorithm,XORSample’ , which also works by adding to
F s randomXORs Qs chosen independently fromX(n,q). However, now the resulting streamlined
formulaFq

s is fed to an exact model counting subroutine to compute the number of surviving solu-
tions, mc. If mc> 0, XORSample’ succeedsand outputs theith surviving solution using a model
selector onFq

s , wherei is chosen uniformly from{1,2, . . . ,mc}. Note thatXORSample’ , in contrast
to XORSample, is non-iterative. Also, the model counting and selecting subroutines it uses are more
complex than SAT solvers; these work well in practice only becauseFq

s is highly streamlined.

Params: q∈ (0,1), a positive integers
Input : A CNF formulaF
Output : A solution ofF , or Failure
begin

Qs←{s constraints randomly drawn fromX(n, p)}
Fq

s ← F ∪Qs // Add s random X O R constraints to F
mc← SATModelCount(Fq

s) // Compute the exact model count of Fq
s

if mc 6= 0 then
i← a random number chosen uniformly from{1,2, . . . ,mc}
σ ← SATFindSolution(Fq

s , i) // Compute the ith solution
return σ // Sampled successfully!

else returnFailure
end

Algorithm 2 : XORSample’ , sampling withXORs using a model counter and selector

The sample-quality analysis ofXORSample’ requires somewhat more complex ideas than that of
XORSample. LetF have 2s

∗
solutions as before. We again fixq= 1/2 and prove that if the parameter

s is sufficiently smaller thans∗, the sample-quality is provably good. The proof relies on the fact that
XORs chosen randomly fromX(n,1/2) act3-wise independentlyon different solutions, i.e., knowing
the value of anXOR constraint on two variable assignments does not tell us anything about its value
on a third assignment. We state this as the following lemma, which can be proved by extending the
linear algebra arguments we used in the proof of Lemma1 (see Appendixfor details).

Lemma 2 (3-wise independence).Let σ1,σ2, and σ3 be three distinct assignments to n Boolean
variables. Let D be anXOR constraint chosen at random fromX(n,1/2). Then for i∈ {0,1},
Pr[σ1(D) = i | σ2(D),σ3(D)] = Pr[σ1(D) = i].

Recall the discussion of expectation, variance, pairwise independence, and 3-wise independence in
Section2. In particular, when a number of random variables are 3-wise independent, the conditional
variance of their sum (conditioned on one of these variables) equals the sum of their individual
conditional variances. We use this to compute bounds on the sampling probability ofXORSample’ .
The idea is to show that the number of solutions surviving, given that any fixed solutionσ survives,
is independent ofσ in expectation and is highly likely to be very close to the expected value. As
a result, the probability with whichσ is output, which is inversely proportional to the number of
solutions surviving along withσ , will be very close to the uniform probability. Here “closeness” is
one-sided and is measured as being within a factor ofc′(α) which approaches 1 very quickly.

Theorem 2. Let F be a formula with2s∗ solutions. Letα > 0 and s= s∗−α. For any solutionσ of
F, the probability p′s(σ) with whichXORSample’ with parameters q= 1/2 and s outputsσ satisfies

p′s(σ) > c′(α) 2−s∗ , where c′(α) =
1−2−α/3

(1+2−α)(1+2−α/3)
.

Further,XORSample’ succeeds with probability larger than c′(α).

Proof sketch.See Appendixfor a detailed proof. We begin by setting up a framework for analyzing
the number of surviving solutions afters XORs Qs drawn fromX(n,1/2) are added toF . Let Yσ ′

be the indicator random variable which is 1 iffσ ′(Qs) = 1, i.e.,σ ′ survivesQs. E [Yσ ′] = 2−s and
Var[Yσ ′] ≤ E [Yσ ′] = 2−s. Further, a straightforward generalization of Lemma2 from a singleXOR
constraintD to s independentXORsQs implies that the random variablesYσ ′ are 3-wise independent.

The variablemc (see Algorithm2), which is the number of surviving solutions, equals∑σ ′Yσ ′ .
Consider the distribution ofmc conditionedon the fact thatσ survives. Using pairwise indepen-
dence, the corresponding conditional expectation can be shows to satisfy:µ = E [mc| σ(Qs) = 1] =

6

1+(2s∗ −1)2−s. More interesting, using 3-wise independence, the correspondingconditional vari-
ationcan also be bounded: Var[mc| σ(Qs) = 1] < E [mc| σ(Qs) = 1].

Sinces= s∗−α, 2α < µ < 1+ 2α . We show thatmcconditioned onσ(Qs) = 1 indeed lies very
close toµ. Let β ≥ 0 be a parameter whose value we will fix later. By Chebychev’s inequality,

Pr
[
|mc−µ| ≥ µ

2β
| σ(Qs) = 1

]
≤ 22β Var[mc| σ(Qs) = 1]

(E [mc| σ(Qs) = 1])2 <
22β

E [mc| σ(Qs) = 1]
=

22β

µ

Therefore, conditioned onσ(Qs) = 1, with probability more than 1−22β /µ, mc lies between(1−
2−β)µ and(1+2−β)µ. Recall thatp′s(σ) is the probability thatXORSample’ outputsσ .

p′s(σ) = Pr[σ(Qs) = 1]
n

∑
i=1

Pr[mc= i | σ(Qs) = 1]
1
i

≥ 2−s Pr
[
mc≤ (1+2−β)µ | σ(Qs) = 1

] 1

(1+2−β)µ
≥ 2−s 1−22β /µ

(1+2−β)µ

Simplifying this expression and optimizing it by settingβ = α/3 gives the desired bound onp′s(σ).
Lastly, the success probability ofXORSample’ is ∑σ p′s(σ) > c′(α).

Remark 1. Theorems1 and2 show that bothXORSampleandXORSample’ can be used to sample
arbitrarily close to the uniform distribution whenq = 1/2 . For example, as the number ofXORs
used inXORSample is increased,α increases, the deviationc(α) from the truly uniform sampling
probability p∗ approaches 0 exponentially fast, and we get progressively smaller error bands around
p∗. However, for any fixedα, these algorithms, somewhat counter-intuitively, do not always sample
truly uniformly (see Appendix). As a result, we expect to see a fluctuation aroundp∗, which, as we
proved above, will be exponentially small inα.

4 Empirical validation

To validate ourXOR-sampling technique, we consider two kinds of formulas: a random 3-SAT in-
stance generated near the SAT phase transition [18] and a structured instance derived from a logistics
planning domain (data and code available from the authors). We used a complete model counter,
Relsat [12], to find all solutions of our problem instances. Our random instance with 75 variables
has a total of 48 satisfying assignments, and our logistics formula with 352 variables has 512 sat-
isfying assignments. (We used formulas with a relatively small number of assignments in order to
evaluate the quality of our sampling. Note that we need to draw many samples for each assignment.)
We usedXORSamplewith MiniSat [14] as the underlying SAT solver to generate samples from the
set of solutions of each formula. Each sample took a fraction of a second to generate on a 4GHz pro-
cessor. For comparison, we also ran the best alternative method for sampling from SAT problems,
SampleSAT [19, 2], allowing it roughly the same cumulative runtime asXORSample.

Figure 1 depicts our results. In the left panel, we consider the random SAT instance, generating
200,000 samples total. In pure uniform sampling, in expectation we have 200,000/48≈ 4,167
samples for each solution. This level is indicated with the solid horizontal line. We see that the
samples produced byXORSample all lie in a narrow band centered around this line. Contrast this
with the results forSampleSAT: SampleSAT does sample quite uniformly from solutions that lie
near each other in Hamming distance but different solution clusters are sampled with different fre-
quencies. This SAT instance has two solution clusters: the first 32 solutions are sampled around
2,900 times each, i.e., not frequently enough, whereas the remaining 16 solutions are sampled too
frequently, around 6,700 times each. (AlthoughSampleSAT greatly improves on other sampling
strategies for SAT, the split into disjoint sampling bands appears inherent in the approach.) The
Kullback-Leibler (KL) divergence between theXORSample data and the uniform distribution is
0.002. ForSampleSAT the KL-divergence from uniform is 0.085. It is clear that theXORSample
approach leads to much more uniform sampling.

The right panel in Figure 1 gives the results for our structured logistics planning instance. (To im-
prove the readability of the figure, we plot the sample frequency only for every fifth assignment.) In
this case, the difference betweenXORSample andSampleSAT is even more dramatic.SampleSAT
in fact only found 256 of the 512 solutions in a total of 100,000 samples. We also see that one of
these solutions is sampled nearly 60,000 times, whereas many other solutions are sampled less than

7

 1000

 10000

 0 10 20 30 40 50

A
bs

ol
ut

e
F

re
qu

en
cy

 (
lo

g
sc

al
e)

Solution #

XORsample
SampleSat

uniform

 1

 10

 100

 1000

 10000

 100000

 0 100 200 300 400 500

A
bs

ol
ut

e
F

re
qu

en
cy

 (
lo

g
sc

al
e)

Solution #

XORSample
SampleSat

uniform

Figure 1:Results ofXORSampleandSampleSAT on a random 3-SAT instance, the left panel, and a logistics
planning problem, the right panel. (See color figures in PDF.)

five times. The KL divergence from uniform is 4.16. (Technically the KL divergence is infinite, but
we assigned a count of one to the non-sampled solutions.) The expected number of samples for each
assignment is 100,000/512≈ 195. The figure also shows that the sample counts fromXORSample
all lie around this value; their KL divergence from uniform is 0.013.

These experiments show thatXORSample is a promising practical technique (with theoretical guar-
antees) for obtaining near-uniform samples from intricate combinatorial spaces.

References
[1] M. Richardson and P. Domingos. Markov logic networks.Machine Learning, 62(1-2):107–136, 2006.
[2] H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deterministic dependen-

cies. In21th AAAI, pages 458–463, Boston, MA, July 2006.
[3] N. Madras. Lectures on Monte Carlo methods. InField Institute Monographs, vol. 16. Amer. Math. Soc.,

2002.
[4] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by

fast computing machines.J. Chem. Phy., 21:1087–1092, 1953.
[5] S. Kirkpatrick, D. Gelatt Jr., and M. Vecchi. Optimization by simuleated annealing.Science, 220(4598):

671–680, 1983.
[6] D. Roth. On the hardness of approximate reasoning.J. AI, 82(1-2):273–302, 1996.
[7] M. L. Littman, S. M. Majercik, and T. Pitassi. Stochastic Boolean satisfiability.J. Auto. Reas., 27(3):

251–296, 2001.
[8] J. D. Park. MAP complexity results and approximation methods. In18th UAI, pages 388–396, Edmonton,

Canada, August 2002.
[9] A. Darwiche. The quest for efficient probabilistic inference, July 2005. Invited Talk, IJCAI-05.

[10] T. Sang, P. Beame, and H. A. Kautz. Performing Bayesian inference by weighted model counting. In20th
AAAI, pages 475–482, Pittsburgh, PA, July 2005.

[11] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for #SAT and Bayesian infer-
ence. In44nd FOCS, pages 340–351, Cambridge, MA, October 2003.

[12] R. J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve real-world SAT instances.
In 14th AAAI, pages 203–208, Providence, RI, July 1997.

[13] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning in a Boolean
satisfiability solver. InICCAD, pages 279–285, San Jose, CA, November 2001.

[14] N. Eén and N. S̈orensson. MiniSat: A SAT solver with conflict-clause minimization. In8th SAT, St.
Andrews, U.K., June 2005. Poster.

[15] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for obtaining good bounds.
In 21th AAAI, pages 54–61, Boston, MA, July 2006.

[16] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions.Theoretical Comput. Sci.,
47(3):85–93, 1986.

[17] J. M. Crawford, M. J. Kearns, and R. E. Schapire. The minimal disagreement parity problem as a hard
satisfiability problem. Technical report, AT&T Bell Labs., 1994.

[18] D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard optimization prob-
lems.Nature, 435:759–764, 2005.

[19] W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting random walk strategies. In
19th AAAI, pages 670–676, San Jose, CA, July 2004.

8

Appendix: Proofs in Full Detail

Proof of Lemma1. We first prove the upper bound onpone,s(σ). Recall that for any two comple-
mentaryXORs (e.g.c⊕d andc⊕d⊕1), σ satisfies exactly oneXOR. Hence, the probability that
σ satisfies anXOR chosen randomly from the distributionX(n,q) is 1/2 . By independence of thes
XORs inQs in XORSample, σ is a solution of the formulaFq

s with probability exactly 2−s. Therefore,
pone,s(σ)≤ Pr

[
σ is a solution ofFq

s
]
= 2−s.

For the lower bound, we resort to pairwise independence. Letσ 6= σ ′ be two solutions ofF . LetD be
an XOR chosen randomly fromX(n,1/2). We use simple linear algebra to show that the probability
that σ(D) = 1 (i.e., σ satisfiesD) is independent of the probability thatσ ′(D) = 1. Recall the
interpretation of variable assignments andXOR constraints in the vector spaceFn

2 (cf. Section2).
First suppose thatσ and σ ′ are linearly dependent. InFn

2, this can happen only if exactly one
of σ andσ ′ is the all-zeros vector. Supposeσ = (0,0, . . . ,0) andσ ′ is non-zero. Perform a linear
transformation onFn

2 so thatσ ′ = (1,0, . . . ,0). LetD be the constrainta1x1+a2x2+ . . .+anxn+b=
1. Then,σ ′(D) = a1 + b and σ(D) = b. Sincea1 is chosen uniformly from{0,1} when D is
drawn fromX(n,1/2), knowinga1 + b gives us no information aboutb, proving independence. A
similar argument works whenσ is non-zero andσ ′ = (0,0, . . . ,0). Finally, if σ andσ ′ are linearly
independent, apply a linear transformation onFn

2 so thatσ = (1,0,0, . . . ,0) andσ ′ = (0,1,0, . . . ,0).
Again, knowing the value ofσ ′(D) = a2 +b tells us nothing abouta1 and therefore aboutσ(D) =
a1 + b. This proves thatσ(D) and σ ′(D) are independent whenD is drawn fromX(n,1/2). In
particular, Pr[σ ′(D) = 1 | σ(D) = 1] = 1/2 . This reasoning easily extends tos XORs in Qs and we
have that Pr[σ ′(Qs) = 1 | σ(Qs) = 1] = 2−s. Now,

pone,s(σ) = Pr
[
σ(Qs) = 1 and for all other solutionsσ ′ of F,σ ′(Qs) = 0

]
= Pr[σ(Qs) = 1] ·Pr

[
for all solutionsσ

′ 6= σ ,σ ′(Qs) = 0 | σ(Qs) = 1
]

= Pr[σ(Qs) = 1] ·
(
1−Pr

[
for some solutionσ ′ 6= σ ,σ ′(Qs) = 1 | σ(Qs) = 1

])
≥ Pr[σ(Qs) = 1] ·

(
1− (2s∗ −1)Pr

[
σ
′(Qs) = 1 | σ(Qs) = 1

])
= 2−s ·

(
1− (2s∗ −1)2−s

)
> 2−s · (1−2−α) = c(α) 2−s

This finishes the proof.

Proof of Lemma2. We employ the linear algebra framework used for showing pairwise indepen-
dence ofXOR constrains fromX(n,1/2) in Lemma1. Let D be the constrainta1x2 + a2x2 + . . . +
anxn +b = 1 in the vector spaceFn

2 as before.σ1,σ2, andσ3 are vectors inFn
2.

Suppose first thatσ2 andσ3 are linearly dependent. As before, exactly one of these must be the
all-zeros vector. Assume w.l.o.g. thatσ2 = (0,0,0, . . . ,0) and apply a linear transformation onFn

2 so
thatσ3 = (1,0,0, . . . ,0). Sinceσ1 differs from bothσ2 andσ3, it must be linearly independent ofσ3
and can be linearly transformed intoσ1 = (0,1,0, . . . ,0). Now, knowingσ2(D) andσ3(D) amounts
to knowingb anda1 +b. This, however, tells us nothing abouta2. SinceD is drawn fromX(n,1/2),
a2 is chosen uniformly from{0,1} so that we know nothing aboutσ1(D), proving independence.

Suppose instead thatσ2 andσ3 are linearly independent. Apply a linear transformation onFn
2 so that

σ2 = (1,0,0, . . . ,0) andσ3 = (0,1,0, . . . ,0). If σ1 is linearly independent ofσ2 andσ3, it can be
linearly transformed intoσ1 = (0,0,1,0, . . . ,0). By the reasoning we used above, knowing the values
of σ2(D) andσ3(D) tells us nothing abouta3 and therefore aboutσ1(D). Finally, if σ1 is linearly
dependent onσ2 andσ3, then it must be either(0,0,0, . . . ,0) or (1,1,0, . . . ,0). In the first case,
σ1(D) equalsb, and in the second, it equalsa1+a2+b. In either case, knowing the values ofσ2(D)
andσ3(D) only tells us abouta1+b anda2+b, giving no information aboutb and therefore keeping
σ1(D) undetermined and unbiased. This finishes all cases, proving 3-wise independence.

Proof of Theorem2. We begin by setting up a framework for analyzing the number of surviving
solutions afters XORs Qs drawn fromX(n,1/2) are added toF . For each solutionσ ′ of F , let Yσ ′

be the indicator random variable which is 1 iffσ ′(Qs) = 1, i.e.,σ ′ survivesQs. E [Yσ ′] = 2−s and,
sinceYσ ′ is a 0-1 variable, Var[Yσ ′] ≤ E [Yσ ′] = 2−s. Further, a straightforward generalization of

9

Lemma2 from a singleXOR constraintD to s independentXORs Qs drawn fromX(n,1/2) implies
that the random variablesYσ ′ for differentσ ′ are 3-wise independent.

The variablemc(see Algorithm2), which is the number of surviving solutions, equals∑σ ′Yσ ′ . Con-
sider the distribution ofmc conditionedon the fact thatσ survives. The corresponding conditional
expectation and variance are given by

E [mc| σ(Qs) = 1] = E

[
∑
σ ′

Yσ ′ | σ(Qs) = 1

]
= ∑

σ ′
E [Yσ ′ | σ(Qs) = 1] by linearity of conditional expectation

= 1+ ∑
σ ′ 6=σ

E [Yσ ′ | σ(Qs) = 1] becauseE [Yσ | σ(Qs) = 1] = 1

= 1+ ∑
σ ′ 6=σ

E [Yσ ′] by pairwise independence betweenYσ ,Yσ ′

= 1+(2s∗ −1)2−s

Var[mc| σ(Qs) = 1] = Var

[
∑
σ ′

Yσ ′ | σ(Qs) = 1

]
= ∑

σ ′
Var[Yσ ′ | σ(Qs) = 1] by 3-wise independence of theY’s

= ∑
σ ′ 6=σ

Var[Yσ ′ | σ(Qs) = 1] because Var[Yσ | σ(Qs) = 1] = 0

= ∑
σ ′ 6=σ

Var[Yσ ′] by pairwise independence betweenYσ ,Yσ ′

≤ (2s∗ −1)2−s < E [mc| σ(Qs) = 1]

Let µ = E [mc| σ(Qs) = 1] = 1+(2s∗−1)2−s. Observe that sinces= s∗−α, this expression equals
2α +1−2−s. In particular, 2α < µ < 1+2α . We will show thatmcconditioned onσ(Qs) = 1 indeed
lies very close toµ. Let β ≥ 0 be a parameter whose value we will optimize and fix shortly. By
Chebychev’s inequality,

Pr
[
|mc−µ| ≥ µ

2β
| σ(Qs) = 1

]
≤ 22β Var[mc| σ(Qs) = 1]

(E [mc| σ(Qs) = 1])2

<
22β

E [mc| σ(Qs) = 1]
=

22β

µ

Therefore, conditioned onσ(Qs) = 1, with probability more than 1−22β /µ, mc lies between(1−
2−β)µ and(1+2−β)µ. Recall thatp′s(σ) is the probability thatXORSample* outputsσ .

p′s(σ) = Pr[σ(Qs) = 1]
n

∑
i=1

Pr[mc= i | σ(Qs) = 1]
1
i

≥ 2−s Pr
[
mc≤ (1+2−β)µ | σ(Qs) = 1

] 1

(1+2−β)µ

≥ 2−s 1−22β /µ

(1+2−β)µ

>
1

2s(1+2α)
1−22β /2α

1+2−β

=
1

2s∗
1−22β−α

(1+2−α)(1+2−β)

A textbook calculation shows that this last quantity is maximized whenβ = (α −1)/3, in which
case we get our strongest result. However, in order to make the final statement cleaner, we fix our
free parameterβ to beα/3, immediately obtaining the bound onp′s(σ) claimed in the theorem.
Lastly, the success probability ofXORSample* is ∑σ p′s(σ) > c′(α).

10

Explanation of Remark1. We give a small example showing that bothXORSampleandXORSample’
necessarily deviate slightly from the truly uniform distribution. Of course, by increasing the number
of XORs in XORSample or decreasing this number forXORSample’ , we can reduce the fluctuation
to an arbitrary degree, approaching truly uniform sampling. Consider a simple formulaF on three
variables,x1,x2, andx3, that has precisely the following five solutions:

σ1 = (1,0,0), σ2 = (1,0,1), σ3 = (1,1,0), σ4 = (1,1,1), and σ5 = (0,0,0).

Here, for example,σ1 denotes the variable assignmentx1 = 1,x2 = 0,x3 = 0. Fix the parameters
of XORSample andXORSample* to beq = 1/2 ands= 2. Both algorithms will randomly choose
two XORs from the set of all 23+1 = 16 XORs uniformly with repetition. An easy calculation shows
that when twoXORs are added thus, each one ofσ1 to σ4 survives uniquely in 18 cases while
σ5 survives uniquely in 21 cases (out of a total of 256 possibilities).XORSample will therefore
sample each ofσ1 to σ4 with probability 18/256≈ 0.07 andσ5 with probability 21/256≈ 0.08.
Similarly, if we also compute the number of timesσi survives along with one, two, three, and four
other solutions, we see that each ofσ1 to σ4 will be sampled byXORSample* with probability
(18+ 33/2+ 9/3+ 3/4+ 1/5)/256≈ 0.1502 whileσ5 will be sampled with probability(21+
24/2+18/3+0/4+1/5)/256≈ 0.1531. �

11

	Introduction
	Preliminaries
	Sampling using xor constraints
	xor-based sampling using SAT solvers: XORSample
	xor-based sampling using model counters and selectors: XORSample'

	Empirical validation

