Near-Uniform Sampling of Combinatorial Spaces
Using XOR Constraints

CarlaP. Gomes Ashish Sabharwal Bart Selman
Department of Computer Science
Cornell University, Ithaca NY 14853-7501, USA
{gomes,sabhar,selman }@cs.cornell.edu *

Abstract

We propose a new technique for sampling the solutions of combinatorial prob-
lems in a near-uniform manner. We focus on problems specified as a Boolean for-
mula, i.e., on SAT instances. Sampling for SAT problems has been shown to have
interesting connections with probabilistic reasoning, making practical sampling
algorithms for SAT highly desirable. The best current approaches are based on
Markov Chain Monte Carlo methods, which have some practical limitations. Our
approach exploits combinatorial properties of random paxigR) constraints to
prune away solutions near-uniformly. The final sample is identified amongst the
remaining ones using a state-of-the-art SAT solver. The resulting sampling dis-
tribution is provably arbitrarily close to uniform. Our experiments show that our
technique achieves a significantly better sampling quality than the best alternative.

1 Introduction

We present a new metho’ORSample, for uniformly sampling from the solutions of hard combi-
natorial problems. Although our method is quite general, we focus on problems expressed in the
Boolean Satisfiability (SAT) framework. Our work is motivated by the fact that efficient sampling
for SAT can open up a range of interesting applications in probabilistic reasdhing| 9, 10, 11].

There has also been a growing interest in combining logical and probabilistic constraints as in the
work of Koller, Russell, Domingos, Bacchus, Halpern, Darwiche, and many others (see e.g. sta-
tistical relational learning and Markov logic networkl)[and a recently proposed Markov logic
system for this task uses efficient SAT sampling as its core reasoning mechahism [

Typical approaches for sampling from combinatorial spaces are based on Markov Chain Monte
Carlo (MCMC) methods, such as the Metropolis algorithm and simulated annea|licg]. These
methods construct a Markov chain with a predefined stationary distribution. One can draw samples
from the stationary distribution by running the Markov chain for a sufficiently long time. Unfortu-
nately, on many combinatorial problems, the time taken by the Markov chain to reach its stationary
distribution scales exponentially with the problem size.

MCMC methods can also be used to find (globally optimal) solutions to combinatorial problems. For

example, simulated annealing (SA) uses the Boltzmann distribution as the stationary distribution.
By lowering the temperature parameter to near zero, the distribution becomes highly concentrated
around the minimum energy states, which correspond to the solutions of the combinatorial problem
under consideration. SA has been successfully applied to a number of combinatorial search prob-
lems. However, many combinatorial problems, especially those with intricate constraint structure,

are beyond the reach of SA and related MCMC methods. Not only does problem structure make
reaching the stationary distribution prohibitively long, even reaching a single (optimal) solution is

often infeasible. Alternative combinatorial search techniques have been developed that are much
more effective at finding solutions. These methods generally exploit clever search space pruning

*This work was supported by the Intelligent Information Systems Institute (IISI) at Cornell University
(AFOSR grant F49620-01-1-0076) and DARPA (REAL grant FA8750-04-2-0216).

techniques, which quickly focus the search on small, but promising, parts of the overall combina-
torial space. As a consequence, these techniques tend to be highly biased, and sample the set of
solutions in an extremely non-uniform way. (Many are in fact deterministic and will only return one
particular solution.)

In this paper, we introduce a general probabilistic technique for obtaining near-uniform samples
from the set of all (globally optimal) solutions of combinatorial problems. Our method can use any
state-of-the-art specialized combinatorial solver as a subroutine, without requiring any modifications
to the solver. The solver can even be deterministic. Most importantly, the quality of our sampling
method is not affected by the possible bias of the underlying specialized solver — all we need is
a solver that is good at findingpmesolution or proving that none exists. We provide theoretical
guarantees for the sampling quality of our approach. We also demonstrate the practical feasibility
of our approach by sampling near-uniformly from instances of hard combinatorial problems.

As mentioned earlier, to make our discussion more concrete, we will discuss our method in the con-
text of SAT. In the SAT problem, we have a set of logical constraints on a set of Boolean (True/False)
variables. The challenge is to find a setting of the variables such that all logical constraints are sat-
isfied. SAT is the prototypical NP-complete problem, and quite likely the most widely studied
combinatorial problem in computer science. There have been dramatic advances in recent years in
the state-of-the-art of SAT solvers [eXR, 13, 14]. Current solvers are able to solve problems with
millions of variables and constraints. Many practical combinatorial problems can be effectively
translated into SAT. As a consequence, one of the current most successful approaches to solving
hard computational problems, arising &g, hardware and software verification and planning and
scheduling, is to first translate the problem into SAT, and then use a state-of-the-art SAT solver to
find a solution (or show that it does not exist). As stated above, these specialized solvers derive much
of their power from quickly focusing their search on a very small part of the combinatorial space.
Many SAT solvers are deterministic, but even when the solvers incorporate some randomization,
solutions will be sampled in a highly non-uniform manner.

The central idea behind our approach can be summarized as follows. Assume for simplicity that
our original SAT instance on Boolean variables has Bolutions or satisfying assignments. How

can we sample uniformly at random from the set of solutions? We add special randomly generated
logical constraints to our SAT problem. Each random constraint is constructed in such a way that
it rules out any given truth assignment exactly with probab#ity Therefore, in expectation, after
addings such constraints, we will have a SAT instance with exactly one solditidfe then use a

SAT solver to find the remaining satisfying assignment and output this as our first sample. We can
repeat this process with a new sesodndomly generated constraints and in this way obtain another
random solution. Note that to output each sample, we can use whatever off-the-shelf SAT solver is
available, because all it needs to do is find the single remaining assigArfiaetrandomization in

the added constraints will guarantee that the assignment is selected uniformly at random.

How do we implement this approach? For our added constraints, we use randomly generated par-
ity or “exclusive-or” (XOR) constraints. In recent work, we introducgdr constraints for the
problem of counting the number of solutions usMBound [15]. Although the building blocks of
MBound andXORSample are the same, this work relies much more heavily on the propertiesrf
constraints, namely, pairwise and even 3-wise independence. As we will discuss betor eon-

straint eliminates any given truth assignment with probabllityand therefore, in expectation, cuts

the set of satisfying assignments in half. For this expected behavior to happen often, the elimina-
tion of each assignment should ideally be fully independent of the elimination of other assignments.
Unfortunately, as far as is known, there are no compact (polynomial size) logical constraints that
can achieve such complete independence. Howewer, constraints guarantee at least pairwise
independence, i.e., if we know that &pR constraintC eliminates assignmeiat, this provides no
information as to whetheZ will remove any another assignmesy. Remarkably, as we will see,

such pairwise independence already leads to near-uniform sampling.

Our sampling approach is inspired by earlier work in computational complexity theory by Valiant
and Vazirani 16], who considered the question whether having one or more assignments affects

1 Of course, we don’t know the true value ®fIn practice, we use a binary style search to obtain a rough
estimate. As we will see, our algorithms work correctly even with over- and under-estimases for

2 The practical feasibility of our approach exploits the fact that current SAT solvers are very effective in
finding such truth assignments in many real-world domains.

the hardness of combinatorial problems. They showed that, in essence, the number of solutions
should not affect the hardness of the problem instances in the worstiéhs&His was received as

a negative result because it shows that finding a solution to a Unique SAT problem (a SAT instance
that is guaranteed to have at most one solution) is not any easier than finding a solution to an arbitrary
SAT instance. Our sampling strategy turns this line of research into a positive direction by showing
how a standard SAT solver, tailored to finding just one solution of a SAT problem, can now be used
to sample near-uniformly from the set of solutions of an arbitrary SAT problem.

In addition to introducingkORSample and deriving theoretical guarantees on the quality of the sam-
ples it generates, we also provide an empirical validation of our approach. One question that arises
is whether the state-of-the-art SAT solvers will perform well on problem instances with addaed

(or parity) constraints. Fortunately, as our experiments show, a careful addition of such constraints
does generally not degrade the performance of the solvers. In fact, the additiomr @bnstraints

can be beneficial since the constraints lead to additional propagation that can be exploited by the
solvers® Our experiments show that we can effectively sample near-uniformly from hard practical
combinatorial problems. In comparison with the best current alternative method on such instances,
our sampling quality is substantially better.

2 Preliminaries

For the rest of this paper, fix the set of propositional variables in all formulas Yo Bé| = n. A
variable assignmend : V — {0,1} is a function that assigns a value{i, 1} to each variable iv.

We may think of the value 0 s LSE and the value 1 asrRUE. We will often abuse notation and
write o (i) for valuations of entities ¢ V when the intended meaning is either already defined or is
clear from the context. In particulas,(1) = 1 ando(0) = 0. Wheno (i) = 1, we say that satisfies

i. Forx € V, —-x denotes the correspondinggatedvariable;o(—x) = 1— o (x). LetF be a formula
over variable§/. o(F) denotes the valuation &f undero. If o satisfies, i.e.,o(F) = 1, thenc

is amode] solution or satisfying assignmetior F. Our goal in this paper is tsample uniformly
from the set of all solutions of a given formuta

An XOR constraint Dover variable¥ is the logical “xor” or parity of a subset U {1}; o satisfies

D if it satisfies anodd numbeiof elements irD. The value 1 allows us to express even parity. For
instanceD = {a,b,c,1} represents the xor constramt b$ ¢4 1, which isTRUE when an even
number ofa, b,c are TRUE. Note that it suffices to use only positive variables. EE@® b ® —c
and-a® b are equivalent td = {a,b,c} andD = {a,b, 1}, respectively. Our focus will be on
formulas which are a logical conjunction of a formula in Conjunctive Normal Form (CNF) and some
XOR constraints. In all our experimentspRr constraints are translated into CNF using additional
variables so that the full formula can be fed directly to standard (CNF-based) SAT solvers.

We will need basic concepts from linear algebra. Egdenote the field of two elements, 0 and 1,
and[F} the vector space of dimensioroverF. An assignment can be thought of as an element of

5. Similarly, anxoRr constrainD can be seen as a linear constraif®, +axxo+ ... +anxn+b=1,
wherea;, b € {0,1}, + denotes addition modulo 2 fd,, = 1 iff D has variable, andb = 1 iff

D has the parity constant 1. In this setting, we can talk about linear transformatibhasfvell as

linear independence @f, ¢’ € I} (see standard texts for details). We will use two properties: every
linear transformation maps the all-zeros vector to itself, and there exists a linear transformation that
maps an linearly independent vectors to any ottkdmearly independent vectors.

Consider the seX of all XOR constraints ove¥. Since anxOR constraint is a subset U {1},

|X| = 21, Our method requires choosingpR constraints fronX at random. Lef(n,q) denote
the probability distributionover X defined as follows: select eagte V independently at random
with probabilityq and include the constant 1 independently with probabffityThis produceoRrs

of average lengtimg. In particular, note that every two complementaiyr constraints involving
the same subset df (e.g.,cd d andcad d @ 1) are chosen with the same probability irrespective of
g. Such complementaryoRr constraints have the simple but useful property that any assigrement
satisfies exactly one of them. Finally, when the distribufitin, /) is used, everior constraint

in X is chosen with probability 21,

3 Note that there are certain classes of structured instances based on parity constraints that are designed to
be hard for SAT solversl/]. Our augmented problem instances appear to behave quite differently from these
specially constructed instances because of the interaction between the constraints in the original instance and
the added random parity constraints.

We will be interested in the random variables which are the sum of indicator random variables:
Y =5, Ys. Linearity of expectation says th@t[Y] = S ,E[Ys]. When variousY, are pairwise
independenti.e., knowingYg, tells us nothing abolty,, even variance behaves linearly: Yy =

Yo Var[Ys]. We will also neectonditional probabilities Here, for a random eveix, linearity of
conditional expectation says tHafY | X] = 3 ;E[Ys | X]. LetX =Y,,. When variou¥,; are3-wise
independent.e., knowingYs, andY, tells us nothing abouf;, , evenconditional variance behaves
linearly: Var[Y | Y5,] = 35 Var[Ys | Yo, . This will be key to the analysis of our second algorithm.

3 Sampling usingXxoR constraints

In this section, we describe and analyze two randomized algoritk@®Sample andXORSample’,

for sampling solutions of a given Boolean form&aear-uniformly using streamlining with random

XOR constraints. Both algorithms are parameterized by two quantities: a positive istagdra

real numbem € (0,1), wheres is the number okoRrs added td= andX(n,q) is the distribution

from which they are drawn. These parameters determine the degree of uniformity achieved by the
algorithms, which we formalize as Theorethand2. The first algorithmXORSample, uses a SAT

solver as a subroutine on the randomly streamlined formula. It repeatedly performs the streamlining
process until the resulting formula has a unique solution. Whisrchosen appropriately, it takes
XORSamplea small number of iterations (on average) to successfully produce a sample. The second
algorithm,XORSample’, is non-iterative. Hersis chosen to be relatively small so that a moderate
number of solutions survivexXORSample’ then uses stronger subroutines, namely a SAT model
counter and a model selector, to output one of the surviving solutions uniformly at random.

3.1 xOR-based sampling using SAT solversORSample

Let F be a formula oven variables, andj ands be the parameters 0fORSample. The algorithm
works by adding td-, in each iterations randomxoR constraint€)s drawn independently from the
distributionX(n,q). This generates a streamlined formBwhose solutions (called trurviving
solutions) are a subset of the solutiong=ofIf there is a unique surviving solutiosm, XORSample
outputsc and stops. Otherwise, it discar@s andFs, and iterates the process (rejection sampling).
The check for uniqueness ofis done by adding the negation ofas a constraint tBs' and testing
whether the resulting formula is still satisfiable. See Algorithfor a full description.

Params g < (0,1), a positive integes
Input : A CNF formulaF
Output : A solution of F
begin
iterationSuccessful- FALSE
while iterationSuccess fuk FALSE do
Qs — {srandom constraints independently drawn friifn, g) }
R — FUQs /I Add s random XOR constraints to F
result— SATSolve(FJ) /Il Solve using a SAT solver
if result= TRUE then

o < solution returned bATSolve (FS)

F —Fu{c} /I Remove o from the solution set

result « SATSolve(F’)

if resul! = FALSE then

iterationSuccess fuk TRUE
L return o /[Output o; it is the unique solution of F

end
Algorithm 1: XORSample, sampling solutions wittkORs using a SAT solver

We now analyze how uniform the samples produced®RSampleare. For the rest of this section,

fix = Y,. LetF be satisfiable and have exactl§ Bolutions;s* € [0,n]. Ideally, we would like

each solutions of F to be sampled with probability 2. Let Pones(c) be the probability that
XORSample outputsc in one iteration This is typically much lower than 2, which is accounted

for by rejection sampling. Nonetheless, we will show that whénlarger thars®, the variation in
Pones(o) over differento is small. Letps(o) be the overall probability thatORSample outputsc.

This, we will show, is very close to 2 , where “closeness” is formalized as being within a factor
of c¢(o) which approaches 1 very fast. The proof closely follows the argument used by Valiant and

Vazirani [16] in their complexity theory work on unigque satisfiability. However, we give a different,
non-combinatorial argument for the pairwise independence propentp®$ needed in the proof,
relying on linear algebra. This approach is insightful and will come handy in Se8tbnWe
describe the main idea below, deferring details to Appendix.

Lemmal. Leta > 0,c(ct) =1—2"% and s=s"+ a. Then ¢o)2° < pones(0) < 275,

Proof sketch.We first prove the upper bound qrnes(o). Recall that for any two complementary
XORS (e.g.cdd andcd d @ 1), o satisfies exactly oneoRr. Hence, the probability that satisfies
anxoR chosen randomly from the distributidf(n, q) is ¥>. By independence of thexoRs in Qs

in XORSample, o survives with probability exactly 2, giving the desired upper bound Pphes(o).

For the lower bound, we resort to pairwise independence.cl£tc’ be two solutions of. Let
D be anxoRr chosen randomly fronX(n,'/2). We use linear algebra arguments to show that the
probability thato(D) = 1 (i.e., o satisfiesD) is independent of the probability that (D) = 1.
Recall the interpretation of variable assignments &o& constraints in the vector spaé¥ (cf.
Section?). First suppose that andc’ are linearly dependent. [}, this can happen only if exactly
one ofc andao’ is the all-zeros vector. Suppose= (0,0,...,0) andc’ is non-zero. Perform a linear
transformation oiff} so thats’ = (1,0, ...,0). LetD be the constraird;x; +axXo+...+aXn+b =

1. Then,o’(D) = a1 +banda (D) = b. Sincea; is chosen uniformly fron{0, 1} whenD is drawn
from X(n,1/»), knowinga; + b gives us no information abots; proving independence. A similar
argument works whew is non-zero anags’ = (0,0,...,0), and also whers and ¢’ are linearly
independent to begin with. We skip the details.

This proves that (D) and ¢’ (D) are independent whel is drawn fromX(n,1/). In particular,
Prlc’(D) = 1| o(D) =1] = Y. This reasoning easily extends$xoRs in Qs and we have that
Prlo’(Qs) =1] 0(Qs) = 1] = 275. Now,
Pones(0) = Pr[c(Qs) = 1 and for all other solutions’ of F,6’(Qs) = 0]
= Pr[o(Qs) = 1] - (1— Pr|[for some solutiors’ # ¢,6'(Qs) = 1| 6(Qs) =1]).
Evaluating this using the union bound and pairwise independence ghawséo) > c(a) 275, O

Theorem 1. Let F be a formula witl2S" solutions. Letx > 0,c(a) = 1—2"% and s=s" + a. For
any solutionc of F, the probability g(c) with whichXORSample with parameters g= ¥, and s
outputso satisfies

1 «

—g _s .

cla) 27 < ps(o) <) 2 and mcm{ps(c)} > c(o) m(;elx{ ps(o)}.

Further, the number of iterations needed to produce one sample has a geometric distribution with
expectation betwee2f and2% /c(«).

Proof. Let p denote the probability thatORSample finds some unique solution in any single it-
eration. pones(0), as before, is the probability that is the unique surviving solutionps(c), the
overall probability of sampling, is given by the infinite geometric series

Ps(0) = Pones(0) + (1~ P)Pones(o) + (1 - f’)zponQS(G) +.
which sums taones(o)/P. In particular,ps(o) is proportional topones(o).

Lemmal says that for any two solutiors; ando, of F, pones(01) andpones(o2) are strictly within

a factor ofc(a) of each other. By the above discussigg(o1) and ps(c2) must also be strictly
within a factor ofc(a) of each other, already proving the min vs. max part of the result. Further,
Y s Ps(0) = 1 because of rejection sampling.

For the first part of the result, suppose for the sake of contradictiompthas) < c(a)2~ for some
0y, violating the claimed lower bound. By the above argumegli) is within a factor ofc(a) of
ps(0o) for every o, and would therefore be at most2. This would makes ; ps(c) strictly less
than one, a contradiction. A similar argument proves the upper boupg(om.

Finally, the number of iterations needed to find a unique solution (thereby successfully producing a
sample) is a geometric random variable with success parametér ; pones(0), and has expected
value I/ p. Using the bounds openes(o) from Lemmal and the fact that the unique survival of each

of the 2" solutionsc are disjoint events, we haye<'2% 2-5=2-% andpg> 25 ¢(a)2 5= c(a)2~ %,

This proves the claimed bounds on the expected number of iteratiops, 1 O

3.2 XxOR-based sampling using model counters and selectorXORSample’

We now discuss our second parameterized algorit@RSample’ , which also works by adding to

F srandomxoRs Qs chosen independently froii(n,q). However, now the resulting streamlined
formulaFs' is fed to an exact model counting subroutine to compute the number of surviving solu-
tions,mc If mc> 0, XORSample’ succeedsnd outputs thé" surviving solution using a model
selector oriy!, wherei is chosen uniformly fror{1,2,...,mc}. Note thatXORSample’, in contrast

to XORSample, is non-iterative. Also, the model counting and selecting subroutines it uses are more
complex than SAT solvers; these work well in practice only bec&ss highly streamlined.

Params q < (0,1), a positive integes
Input : A CNF formulaF
Output : A solution of F, or Failure

begin
Qs — {sconstraints randomly drawn fro&(n, p) }
Fs — FUQs /I Add s random XOR constraints to F
mc«— SATModelCount(Fs') /I Compute the exact model count of F
if mc+#£ Othen
i — a random number chosen uniformly frofh, 2,...,mc}
o — SATFindSolution(F&.i) /I Compute the it solution
return o /I Sampled successfully!
else returnFailure

end
Algorithm 2 : XORSample’, sampling withxoRrs using a model counter and selector

The sample-quality analysis ofORSample’ requires somewhat more complex ideas than that of
XORSample. LetF have 2 solutions as before. We again fix= %/, and prove that if the parameter

sis sufficiently smaller thas*, the sample-quality is provably good. The proof relies on the fact that
XORs chosen randomly froi(n,'/>) act3-wise independentlyn different solutions, i.e., knowing

the value of arxoRr constraint on two variable assignments does not tell us anything about its value
on a third assignment. We state this as the following lemma, which can be proved by extending the
linear algebra arguments we used in the proof of Lenirsee Appendixfor details).

Lemma 2 (3-wise independence)Let o1, 02, and o3 be three distinct assignments to n Boolean
variables. Let D be arxoRr constraint chosen at random froii(n,*/). Then for ic {0,1},
Pr[o1(D) =i | 02(D),03(D)] = Pr[o1(D) =I].

Recall the discussion of expectation, variance, pairwise independence, and 3-wise independence in
Section2. In particular, when a number of random variables are 3-wise independent, the conditional
variance of their sum (conditioned on one of these variables) equals the sum of their individual
conditional variances. We use this to compute bounds on the sampling probab{DRSample’ .

The idea is to show that the number of solutions surviving, given that any fixed sotugarvives,

is independent o6 in expectation and is highly likely to be very close to the expected value. As

a result, the probability with whicks is output, which is inversely proportional to the number of
solutions surviving along witlw, will be very close to the uniform probability. Here “closeness” is
one-sided and is measured as being within a factef(of) which approaches 1 very quickly.

Theorem 2. Let F be a formula witt?$" solutions. Letx > 0 and s=s* — a. For any solutiono of
F, the probability 3(c) with whichxORSample’ with parameters g Y, and s outputs satisfies
1-2793

pi(c) > d(a) 27, where é(a) = A za 129

Further, XORSample’ succeeds with probability larger thar(et).

Proof sketch.See Appendixfor a detailed proof. We begin by setting up a framework for analyzing
the number of surviving solutions afterxors Qs drawn fromX(n,/;) are added td=. Let Yy

be the indicator random variable which is 1 if(Qs) = 1, i.e., o’ survivesQs. E[Yy] = 275 and
Var[Yy] <E[Ys] =275, Further, a straightforward generalization of Lem#iom a singlexor
constrainD to sindependenkoRs Qs implies that the random variabl¥s: are 3-wise independent.

The variablemc (see Algorithm2), which is the number of surviving solutions, equdls: Y.
Consider the distribution ainc conditionecn the fact thato survives. Using pairwise indepen-
dence, the corresponding conditional expectation can be shows to satisfii:imc| 6(Qs) = 1] =

1+ (25 —1)2-S. More interesting, using 3-wise independence, the correspoudimgjtional vari-
ation can also be bounded: Manc| o(Qs) =1] < E[mc| o(Qs) =1].

Sinces=s*— o, 2% < u < 1+ 2%. We show thamc conditioned ons(Qs) = 1 indeed lies very
close tou. Let B > 0 be a parameter whose value we will fix later. By Chebychev’s inequality,

228 var[mc| 6(Qs) = 1] _ 2% i
(E[mec[o(Qs) =1))2 ~E[mc|o(Q) =1 u

Therefore, conditioned oa(Qs) = 1, with probability more than 4 228 /u, mclies betweer(1 —
2-Pyu and(1+27F)u. Recall thatp)(c) is the probability thakORSample’ outputsc.

K _
Pr{Ime—u| > 25 | 0(Q9) =1] <

(o) = Prio(Qu) = 1] 3 Prime=i|o(Qs) = 1]

1 1-2%/u

> 275 Prime< (14278 o =1 —— G

22 Prjmos (142) 0(Q) = 1) o 2 2°
Simplifying this expression and optimizing it by settiig= /3 gives the desired bound @(o).
Lastly, the success probability BORSample’ is ¥ ; ps(o) > ¢/ (). O

Remark 1. Theoremsl and2 show that bottKkORSample andXORSample’ can be used to sample
arbitrarily close to the uniform distribution whem= Y,. For example, as the number ORs

used inXORSample is increasedg increases, the deviatiarfa) from the truly uniform sampling
probability p* approaches 0 exponentially fast, and we get progressively smaller error bands around
p*. However, for any fixedy, these algorithms, somewhat counter-intuitively, do not always sample
truly uniformly (see Appendix). As a result, we expect to see a fluctuation arpgymihich, as we
proved above, will be exponentially smallin

4 Empirical validation

To validate ourxor-sampling technique, we consider two kinds of formulas: a random 3-SAT in-
stance generated near the SAT phase transiti§rajd a structured instance derived from a logistics
planning domain (data and code available from the authors). We used a complete model counter,
Relsat [12], to find all solutions of our problem instances. Our random instance with 75 variables
has a total of 48 satisfying assignments, and our logistics formula with 352 variables has 512 sat-
isfying assignments. (We used formulas with a relatively small number of assignments in order to
evaluate the quality of our sampling. Note that we need to draw many samples for each assignment.)
We usedXORSamplewith MiniSat [14] as the underlying SAT solver to generate samples from the
set of solutions of each formula. Each sample took a fraction of a second to generate on a 4GHz pro-
cessor. For comparison, we also ran the best alternative method for sampling from SAT problems,
SampleSAT [19, 2], allowing it roughly the same cumulative runtimeXSRSample.

Figure 1 depicts our results. In the left panel, we consider the random SAT instance, generating
200,000 samples total. In pure uniform sampling, in expectation we hav®Q@W)@8 ~ 4,167
samples for each solution. This level is indicated with the solid horizontal line. We see that the
samples produced byORSample all lie in a narrow band centered around this line. Contrast this
with the results foilSampleSAT: SampleSAT does sample quite uniformly from solutions that lie
near each other in Hamming distance but different solution clusters are sampled with different fre-
guencies. This SAT instance has two solution clusters: the first 32 solutions are sampled around
2,900 times each, i.e., not frequently enough, whereas the remaining 16 solutions are sampled too
frequently, around 6,700 times each. (AlthousgmpleSAT greatly improves on other sampling
strategies for SAT, the split into disjoint sampling bands appears inherent in the approach.) The
Kullback-Leibler (KL) divergence between théORSample data and the uniform distribution is
0.002. ForSampleSAT the KL-divergence from uniform is 0.085. It is clear that k@RSample
approach leads to much more uniform sampling.

The right panel in Figure 1 gives the results for our structured logistics planning instance. (To im-
prove the readability of the figure, we plot the sample frequency only for every fifth assignment.) In
this case, the difference betweg@RSample andSampleSAT is even more dramatiSampleSAT

in fact only found 256 of the 512 solutions in a total of 100,000 samples. We also see that one of
these solutions is sampled nearly 60,000 times, whereas many other solutions are sampled less than

T 100000 T T T T
XORsample + o XORSample +
SampleSat = SampleSat ©
uniform - uniform
—~ 10000 —_
Q< L 10000 f
© [
3 3 °
o 08,0000 gPagaaaa o o
<) s}
= = 1000
> >
[2))
o c
5] 9] TS . D R e
ug)_ ﬂg)_ 100 TG G T L g R A
s 6,500°2000080500,0800958 40,0880° s 2l
2 2 o o o
2 =2 @ oy =
3 2 0h o o
8 2 o ° Ry
< < a] a [a]a]
oo oo
1o oo oo o
1000 s s s s s s s s s
0 10 20 30 40 50 0 100 200 300 400 500
Solution # Solution #

Figure 1:Results oiKORSampleandSampleSAT on a random 3-SAT instance, the left panel, and a logistics
planning problem, the right panel. (See color figures in PDF.)

five times. The KL divergence from uniform is 4.16. (Technically the KL divergence is infinite, but

we assigned a count of one to the non-sampled solutions.) The expected number of samples for each
assignment is 10000/512~ 195. The figure also shows that the sample counts f\@RSample

all lie around this value; their KL divergence from uniform is 0.013.

These experiments show th&RSampleis a promising practical technique (with theoretical guar-
antees) for obtaining near-uniform samples from intricate combinatorial spaces.

References
[1] M. Richardson and P. Domingos. Markov logic networkiachine Learning62(1-2):107-136, 2006.
[2] H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deterministic dependen-
cies. In21th AAA| pages 458-463, Boston, MA, July 2006.
[3] lglo(l)\/lzadras. Lectures on Monte Carlo methodsField Institute Monographssol. 16. Amer. Math. Soc.,

[4] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. Equations of state calculations by
fast computing machines. Chem. Phy.21:1087-1092, 1953.
[5] S. Kirkpatrick, D. Gelatt Jr., and M. Vecchi. Optimization by simuleated anneaBogence220(4598):
671-680, 1983.
[6] D. Roth. On the hardness of approximate reasoning\l, 82(1-2):273-302, 1996.
[7] M. L. Littman, S. M. Majercik, and T. Pitassi. Stochastic Boolean satisfiabilityAuto. Reas.27(3):
251-296, 2001.
[8] J.D. Park. MAP complexity results and approximation method&8th UA|, pages 388-396, Edmonton,
Canada, August 2002.
[9] A. Darwiche. The quest for efficient probabilistic inference, July 2005. Invited Talk, IJCAI-05.
[10] T.Sang, P. Beame, and H. A. Kautz. Performing Bayesian inference by weighted model cour2id. In
AAAI, pages 475-482, Pittsburgh, PA, July 2005.
[11] F. Bacchus, S. Dalmao, and T. Pitassi. Algorithms and complexity results for #SAT and Bayesian infer-
ence. Ind4nd FOCSpages 340-351, Cambridge, MA, October 2003.
[12] R.J. Bayardo Jr. and R. C. Schrag. Using CSP look-back techniques to solve real-world SAT instances.
In 14th AAA] pages 203-208, Providence, RI, July 1997.
[13] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict driven learning in a Boolean
satisfiability solver. INCCAD, pages 279-285, San Jose, CA, November 2001.
[14] N. Eén and N. 8rensson. MiniSat: A SAT solver with conflict-clause minimization. 8th SAT St.
Andrews, U.K., June 2005. Poster.
[15] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for obtaining good bounds.
In 21th AAA| pages 54-61, Boston, MA, July 2006.
[16] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutibneoretical Comput. Sg¢i.
47(3):85-93, 1986.
[17] J. M. Crawford, M. J. Kearns, and R. E. Schapire. The minimal disagreement parity problem as a hard
satisfiability problem. Technical report, AT&T Bell Labs., 1994.
[18] D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard optimization prob-
lems. Nature 435:759-764, 2005.
[19] W. Wei, J. Erenrich, and B. Selman. Towards efficient sampling: Exploiting random walk strategies. In
19th AAA| pages 670-676, San Jose, CA, July 2004.

Appendix: Proofs in Full Detail

Proof of Lemmal. We first prove the upper bound qines(o). Recall that for any two comple-
mentaryxoRs (e.g.cdd andcd d @ 1), o satisfies exactly ong8OR. Hence, the probability that
o satisfies arxoRr chosen randomly from the distributidf(n, q) is %>. By independence of the
XORS inQs in XORSample, & is a solution of the formul&s' with probability exactly 25. Therefore,
Pones(0) < Pr[o is a solution ofs'| =275,

For the lower bound, we resort to pairwise independenceczéts’ be two solutions oF . LetD be
an xoRr chosen randomly frori(n,%/>). We use simple linear algebra to show that the probability
that 6(D) = 1 (i.e., o satisfiesD) is independent of the probability that(D) = 1. Recall the
interpretation of variable assignments axoR constraints in the vector spa&¥ (cf. Section2).
First suppose that and ¢’ are linearly dependent. IR, this can happen only if exactly one
of o ando’ is the all-zeros vector. Suppose= (0,0,...,0) andc’ is non-zero. Perform a linear
transformation ot so thato’ = (1,0,...,0). LetD be the constrairdyx; +axXo + ... +anXn+b=

1. Then,o’(D) =a+bando(D) =b. Sincea; is chosen uniformly from{0,1} whenD is
drawn fromX(n,%/»), knowinga; + b gives us no information abols, proving independence. A
similar argument works whea is non-zero an@’ = (0,0,...,0). Finally, if c ando’ are linearly
independent, apply a linear transformationi®rso thato = (1,0,0,...,0) ands’ = (0,1,0,...,0).
Again, knowing the value o6’(D) = az + b tells us nothing abowt; and therefore abowt(D) =
a, +b. This proves that(D) and ¢’(D) are independent whed is drawn fromX(n,}/). In
particular, Pfc’(D) = 1| o(D) = 1] = Y%,. This reasoning easily extendssxoRs in Qs and we
have that P[ra’(Qs) =1]0(Qs) =1] =275 Now,

Pones(0) = Pr[c(Qs) = 1 and for all other solutions’ of F,6’(Qs) = 0]
= Pr[c(Qs) = 1] Pr[for all solutionsc’ # 6,6"(Qs) = 0| 6(Qs) = 1]
= Pr[o(Qs) = 1] - (1— Pr[for some solutiors’ # ¢,6"(Qs) = 1| 6(Qs) = 1])
[

> Prlo(Qs) = 1 (1~ (2° ~1)Pr[o’(Q9) = 1| 6(Q9) = 1])
—2s. (1 (25 —1)2)
>25.(1-27% = ¢(a)2°S
This finishes the proof. O

Proof of Lemm&. We employ the linear algebra framework used for showing pairwise indepen-

dence ofxOR constrains fromX(n,l/z) in Lemmal. Let D be the constraindyX, + azXo + ...+
anXn+ b = 1 in the vector spacg) as beforeosy, o2, andos are vectors irff%.

Suppose first that, and o3 are linearly dependent. As before, exactly one of these must be the
all-zeros vector. Assume w.l.0.g. that= (0,0,0,...,0) and apply a linear transformation &§ so
thatos = (1,0,0,...,0). Sinceo; differs from botho, andos, it must be linearly independent of

and can be linearly transformed intg@ = (0,1,0,...,0). Now, knowingo,(D) andos(D) amounts

to knowingb anda; +b. This, however, tells us nothmg abaayt SinceD is drawn fromX(n,%/2),

ay is chosen uniformly fror{0,1} so that we know nothing abouwt (D), proving mdependence

Suppose instead thap andos are linearly independent. Apply a linear transformatiorf§iso that

o, = (1,0,0,...,0) andos = (0,1,0,...,0). If o1 is linearly independent of, and o3, it can be
linearly transformed intay = (0,0,1,0,...,0). By the reasoning we used above, knowing the values
of o»(D) ando3(D) tells us nothing abouds and therefore about; (D). Finally, if o3 is linearly
dependent o, and o3, then it must be eithef0,0,0,...,0) or (1,1,0,...,0). In the first case,
o1(D) equals, and in the second, it equals+ az +b. In either case, knowing the valuesaf(D)
andos(D) only tells us aboua; + b anda, + b, giving no information about and therefore keeping
o1(D) undetermined and unbiased. This finishes all cases, proving 3-wise independence]

Proof of Theoren2. We begin by setting up a framework for analyzing the number of surviving
solutions afters XoRs Qs drawn fromX(n,'/,) are added t&. For each solutiom’ of F, let Yy

be the indicator random variable which is 1 dff(Qs) = 1, i.e.,o’ survivesQs. E[Ys/] = 27° and,
sinceY, is a 0-1 variable, VdiY,/] < E[Y,/] = 275. Further, a straightforward generalization of

Lemma2 from a singlexoRr constraintD to s independenkoORrs Qs drawn fromX(n,l/z) implies
that the random variablés, for differento’ are 3-wise independent.

The variablemc(see Algorithm?2), which is the number of surviving solutions, equgls Y,/. Con-
sider the distribution omc conditionedn the fact that: survives. The corresponding conditional
expectation and variance are given by

2 Yo |0(Qs) =]

o

= ZIE[YG/ | 0(Qs) = 1] by linearity of conditional expectation
(o)

E[mc|o(Qs) =1 =E

=1+ Z E[Ys |06(Qs)=1] becaus&[Ys | o(Qs) =1 =1

[o

=1+ E [Yy] by pairwise independence betwegn Y,
o'#o
=14 (2 —1)2°S
Var[mc| 6(Qs) = 1] = Var ZYG, | 6(Qs) = 1]
(e}
= ZVar[YG/ | 0(Qs) =1] by 3-wise independence of tiés
(o)
= Z Var[Yy | 6(Qs) = 1] because Vdl; | 6(Qs) =1/ =0
o'#o
= Z Var Y] by pairwise independence betwegn Y,
o'#o

< (2 -1)2°° < E[mc| o(Qs) =1

Letu =E[mc| o(Qs) = 1] = 1+ (25 —1)2°5. Observe that since=s* — «, this expression equals
2%41—275 Inparticular, 2 < u < 142%. We will show thaimcconditioned oro (Qs) = 1 indeed
lies very close tqu. Let B > 0 be a parameter whose value we will optimize and fix shortly. By
Chebychev’s inequality,
228 Var[mc| 6(Qs) = 1]
(E[mc| o(Qs) = 1])2
22 2%

< = —
E[mc| o(Qs) =1] u
Therefore, conditioned oa(Qs) = 1, with probability more than 4 228 /i, mclies betweer(1 —
2-P)u and(1+2P)u. Recall thatp)(o) is the probability thakORSample* outputsc.

Pr[Ime—u| > 25 | 0(Qs) = 1] <

p0) = Prio(Q:) = 1] 3 Prime=i|o(Qq) = 1]

s _ 1

>2 Pr{mcg (1+2P)ulo(Qs) = 1} @42 P
> 2~S 1-2% /,u
T (1+2P)p

1 1-2% /2
25(1+2%) 142-B
1 1—2%-a

T2 (1+2°9)(1+2F)

A textbook calculation shows that this last quantity is maximized when (o — 1)/3, in which
case we get our strongest result. However, in order to make the final statement cleaner, we fix our

free parametefl to be o/3, immediately obtaining the bound @j(c) claimed in the theorem.
Lastly, the success probability BORSample* is § ; p5(o) > /(). O

>

10

Explanation of Remark. We give a small example showing that bathRSampleandXORSample’
necessarily deviate slightly from the truly uniform distribution. Of course, by increasing the number
of XORs in XORSample or decreasing this number f®lORSample’, we can reduce the fluctuation

to an arbitrary degree, approaching truly uniform sampling. Consider a simple foFhmaahree
variablesxi, X2, andxs, that has precisely the following five solutions:

o1=(1,0,0), 02 = (1,0,1), 03 = (1,1,0), 04 = (1,1,1), and o5 = (0,0,0).

Here, for exampleg; denotes the variable assignmemt= 1,x, = 0,x3 = 0. Fix the parameters
of XORSample and XORSample* to beq = Y, ands= 2. Both algorithms will randomly choose
two XORs from the set of all 2" = 16 xoRs uniformly with repetition. An easy calculation shows
that when twoxoRs are added thus, each one®f to o4 survives uniquely in 18 cases while
o5 survives uniquely in 21 cases (out of a total of 256 possibilitie@€RSample will therefore
sample each of1 to o4 with probability 18256~ 0.07 andos with probability 21/256~ 0.08.
Similarly, if we also compute the number of timegssurvives along with one, two, three, and four
other solutions, we see that eachaf to o4 will be sampled byxORSample* with probability
(18+33/2+9/3+3/4+1/5)/256 ~ 0.1502 while o5 will be sampled with probability 21+
24/2+18/3+0/4+1/5)/256~ 0.1531. O

11

	Introduction
	Preliminaries
	Sampling using xor constraints
	xor-based sampling using SAT solvers: XORSample
	xor-based sampling using model counters and selectors: XORSample'

	Empirical validation

