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Abstract

We prove a quasi-polynomial lower bound on the
size of bounded-depth Frege proofs of the pigeonhole
principle PHPm

n where m = (1 + 1=polylog n)n. This
lower bound qualitatively matches the known quasi-
polynomial-size bounded-depth Frege proofs for these
principles. Our technique, which uses a switching
lemma argument like other lower bounds for bounded-
depth Frege proofs, is novel in that the tautology to
which this switching lemma is applied remains random
throughout the argument.

1 Introduction

The propositional pigeonhole principle asserts that m pi-
geons cannot be placed in n holes with at most one pi-
geon per hole whenever m is larger than n. It is an ex-
ceptionally simple fact that underlies many theorems in
mathematics, and is the most extensively studied combi-
natorial principle in proof complexity. (See [19] for an
excellent survey on the proof complexity of pigeonhole
principles.) It can be formalized as a propositional for-
mula, denoted PHPm

n , in a standard way; by convention,
this formalization rules out relational as well as func-
tional mappings of m pigeons to n holes.

Proving super-polynomial lower bounds on the
length of propositional proofs of the pigeonhole prin-
ciple when m = n+ 1 has been a major achievement in
proof complexity. The principle can be made weaker

�Research supported by NSF grant CCR-0098066
†Research supported by US-Israel BSF grant 98-00349

(and hence easier to prove) by increasing the number of
pigeons relative to the number of holes, or by consider-
ing fewer of the possible mappings of pigeons to holes.
Two well-studied examples of the latter weakenings, the
onto-PHP and the functional-PHP, only rule out, respec-
tively, surjective and functional mappings from pigeons
to holes. In this paper, we will prove lower bounds that
apply to all of these variations of the basic PHP.

For all m > n, Buss [9] has given polynomial-size
Frege proofs of PHPm

n . He uses families of polynomial-
size formulas that count the number of 1’s in an N-bit
string and Frege proofs of their properties to show that
the number of pigeons successfully mapped injectively
can be at most the number of holes.

In weaker proof systems, where such formulas cannot
be represented, the proof complexity of the pigeonhole
principle depends crucially on the number of pigeons,
m, as a function of the number of holes, n. As m in-
creases, the principle becomes weaker (easier to prove)
and in turn the proof complexity question becomes more
difficult. We review the basics of what is known for Res-
olution and bounded-depth Frege systems below. Gen-
erally, the weak pigeonhole principle (WPHP) has been
used to refer to PHPm

n whenever m is at least a constant
factor larger than n. We will be primarily concerned
with forms of the pigeonhole principle that are signif-
icantly weaker than the usual pigeonhole principle but
somewhat stronger than these typical weak forms.

For the Resolution proof system, the complexity of
the pigeonhole principle is essentially resolved. In 1985,
Haken proved the first super-polynomial lower bounds
for unrestricted Resolution proofs of PHPm

n , for m =
n+ 1 [10]. This lower bound was generalized by Buss
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and Turan [8] for m < n2. For the next 10 years, the res-
olution complexity of PHPm

n for m� n2 was completely
open. A recent result due to Raz [17] gives exponen-
tial Resolution lower bounds for the weak pigeonhole
principle, and subsequently Razborov has resolved the
problem for most interesting variants of the PHP [20].

Substantially less is known about the complexity of
the pigeonhole principle in bounded-depth Frege sys-
tems, although strong lower bounds are known when
the number of pigeons m is close to the number of
holes n. Ajtai proved super-polynomial lower bounds
for PHPn+1

n with an ingenious blend of combinatorics
and nonstandard model theory [1]. This result was im-
proved to exponential lower bounds in [4]. It was ob-
served in [5] that the above lower bounds can in fact be
applied to PHPm

n for m � n+ nε, for some ε that falls
off exponentially in the depth of the formulas involved
in the proof.

For the case of larger m (the topic of this paper), the
complexity of bounded-depth Frege proofs of PHPm

n is
slowly emerging, with surprising and interconnected re-
sults. There are several deep connections between the
complexity of the weak pigeonhole principle and other
important problems. First, lower bounds for bounded-
depth Frege proofs of the weak pigeonhole principles
suffice to show unprovability results for the P versus NP
statement (see [19]). Secondly, the long-standing ques-
tion of whether or not the existence of infinitely many
primes has an I∆0 proof is closely related to the com-
plexity of WPHP in bounded-depth Frege systems [16].
Thirdly, the question is closely related to the complexity
of approximate counting [15].

In bounded-depth Frege systems more powerful than
resolution, there are two significant prior results con-
cerning the proof complexity of weak pigeonhole prin-
ciples: There are bounded-depth Frege proofs of PHPm

n
for m as small as n+ n=polylog n of quasi-polynomial
size [16, 13, 14]; thus exponential lower bounds for the
weak pigeonhole principle are out of the question. In
fact, this upper bound is provable in a very restricted
form of bounded-depth Frege where all lines in the proof
are disjunctions of polylog n-sized conjunctions, a proof
system known as Res(polylog n). On the other hand, [2]
shows exponential lower bounds for weak pigeonhole
principles in Res(2), a proof system which allows lines
to be disjunctions of size-2 conjunctions.

In this paper we prove quasi-polynomial lower
bounds for the weak pigeonhole principle whenever m�
n+n=polylog n. More precisely, we show that given in-
tegers c and h such that c is sufficiently large compared
to h, there exists an integer a > 1 such that any depth-h
proof of PHPm

n , where m � n+ n= logc n, requires size
2loga n. This is a substantial improvement over previous

lower bounds. Our proof technique applies a switching
lemma to a weaker tautology based on certain bipartite
graphs. This type of tautology was introduced in [7].
Although we rely heavily on the simplified switching
lemma arguments presented in [3, 21], in a major differ-
ence from previous switching-lemma-based proofs, both
the tautologies themselves and the restrictions we con-
sider remain random throughout most of the argument.

2 Overview

The high-level schema of our proof is not new. Ignor-
ing parameters for a minute, we start with an alleged
proof of PHPm

n of small size. We then show that assign-
ing values to some of the variables in the proof leaves
us with a sequence of formulas, each of which can be
represented as a particular type of decision tree of small
height. This part of the argument is generally referred to
as the switching lemma. We then prove that the leaves
of any such short tree corresponding to a formula in the
proof must all be labelled 1 if the proof is to be sound.
Finally, we show that the tree corresponding to PHPm

n
has leaves labelled 0, which is a contradiction since it
must appear as a formula in the alleged proof. We now
overview the lower bound components in more detail.

The lower bounds for bounded-depth Frege proofs of
PHPn+1

n [1, 4] used restrictions, partial assignments of
values to input variables, and iteratively applied “switch-
ing lemmas” with respect to random choices of these re-
strictions. The first switching lemmas showed that after
one applies a randomly chosen restriction that assigns
values to many, but far from all, of the input variables
with high probability one can convert an arbitrary DNF
formula with small terms into a CNF formula with small
clauses (hence the name). More generally, such switch-
ing lemmas allow one to convert arbitrary DNF formu-
las with small terms into small height decision trees
(which implies the conversion to CNF formulas with
small clauses). The basic idea is that for each level of
the formulas/circuits, one proves that a randomly cho-
sen restriction will succeed with positive probability for
all sub-formulas/gates at that level. One then fixes such
a restriction for that level and continues to the next level.
To obtain a lower bound one chooses a family of restric-
tions suited to the target of the analysis. In the case of
PHPm

n , the natural restrictions to consider correspond to
partial matchings between pigeons and holes.

The form of the argument by which switching lem-
mas are proven generally depends on the property that
the ratio of the probability that an input variable remains
unassigned to the probability that it is set to 0 (respec-
tively, to 1) is sufficiently less than 1. In the case of a
random partial matching that contains (1� p)n edges ap-
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plied to the variables of PHPm
n , there are pn unmatched

holes and at least pm unmatched pigeons. Hence, the
probability that any edge-variable remains unassigned
(i.e. neither used nor ruled out by the partial matching)
is at least p2. However, the partial matching restrictions
set less than a 1=m fraction of variables to 1. Thus the
proofs required that p2n < p2m < 1 and thus p < n�1=2.
This compares with choices of p = n�O(1=h) for depth
h circuit lower bounds in the best arguments for parity
proven in [11]. Hence, the best known lower bounds on
the size of depth-h circuits computing parity is of the

form 2nΩ(1=h)
, while the best known lower bound on the

size of depth-h proofs of PHPn+1
n is of the form 2n2�O(h)

.
A problem with extending the lower bounds to PHPm

n
for larger m is that, after a partial matching restriction
is applied, the absolute difference between the number
pigeons and holes does not change but the number of
holes is dramatically reduced. This can qualitatively
change the ratio between pigeons and holes. If this is
too large then the probability that variables remain unas-
signed grows dramatically and, in the next level, the
above argument does not work at all. For example, with
the above argument, if the difference between the num-
ber of pigeons and holes is as large as n3=4 then after
only one round the above argument will fail. The ex-
tension in [5] to lower bound proofs for PHPn+nεh

n for
formulas of depth h relies on the fact that even after h
rounds of restrictions the gap is small enough that there
is no such qualitative change; but this is the limit using
the probabilities as above.

We are able to resolve the above difficulties for m
as large as n+ n=polylog n. In particular, we increase
the probability that variables are set to 1 to 1=polylog n
from 1=m by restricting the matchings to be contained
in bipartite graphs G of polylog n degree. Thus we can
keep as many as n=polylog n of the holes unmatched in
each round. Therefore, by choosing the exponents in the
polylog n carefully as a function of the depth of the for-
mulas, we can tolerate gaps between the number of pi-
geons and the number of holes that are also n=polylog n.

A difficulty with this outline is that one must be care-
ful throughout the argument that the restrictions one
chooses do not remove all the neighbors of a node with-
out matching it, which would simplify the pigeonhole
principle to a triviality. It is not at all clear how one
could explicitly construct low degree graphs such that
some simple additional condition on the restrictions that
we choose at each stage could enforce the desired prop-
erty. It is unclear even how one might do this non-
constructively because it is not clear what property of
the random graph would suffice.

Instead, unlike previous arguments, we do not fix
the graph in advance; we keep the input graph random

throughout the argument, and consider for each such
graph G its associated proof of the pigeonhole principle
restricted to G. Since we do not know what G is at each
stage we cannot simply fix the restriction as we deal with
each level; we must keep that random as well. Having
done this, we can use simple Chernoff bounds to show
that, for almost all combinations of graphs and restric-
tions, the degree at each level will not be much smaller
than the expected degree, so the pigeonhole principle
will remain far from trivial. We adjust parameters to
reduce the probability that a restriction fails to simplify
a given level so that it is much smaller than the number
of levels. Then we apply the probabilistic method to the
whole experiment involving the graph G as well as the
sequence of restrictions.

There is one other technical point that is important in
the argument. In order for the probabilities in the switch-
ing lemma argument to work out it is critical that the de-
grees of vertices in the graph after each level of restric-
tion is applied are decreased significantly at each step as
well as being small in the original graph G. Using an-
other simple Chernoff bound we show that the degrees
of vertices given almost all combinations of graphs and
restrictions will not be much larger than their expected
value and this suffices to yield the decrease in degree.

Overall, our argument is expressed in much the same
terms as those in [3, 21], although we find it simpler to
omit formally defining k-evaluations as separate entities.
One way of looking at our technique is that we apply two
very different kinds of random restrictions to a proof of
PHPm

n : first, one that sets many variables to 0, corre-
sponding to the restriction of the problem to the graph
G, and then, one that sets partial matchings for use with
the switching lemma.

3 Frege proofs and W PHP(G)

A formula is a tree whose internal nodes are labelled
by either _ (fanin 2) or : (fanin 1) and whose leaves
are labelled by variables. Given a node in this tree, the
full tree rooted at that node is called a (not necessarily
proper) subformula of the original formula. If a formula
contains no connectives, then it has depth 0. Otherwise,
the depth of a (sub)formula A is the maximum number
of alternations of connectives along any path from the
root to leaf, plus one. The merged form of a formula A
is the tree such that all _’s labelling adjacent vertices of
A are identified into a single node of unbounded fanin,
also labelled _.

A Frege proof system is specified by a finite set of
sound and complete inference rules, rules for deriving
new propositional formulas from existing ones by con-
sistent substitution of formulas for variables in the rule.
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A typical example is the following, due to Schoenfield,
in which p;q;r are variables that stand for formulas and
p;q ` r denotes that p and q yield r in one step:
Excluded Middle: ` :p_ p, Expansion Rule: p ` q_ p,
Contraction Rule: p_ p ` p, Associative Rule: p_ (q_
r) ` (p_q)_ r, Cut Rule: p_q; :p_ r ` q_ r.

We will say that the size of a Frege rule is the number
of distinct subformulas mentioned in the rule. For exam-
ple, the size of the cut rule above is 7; the subformulas
mentioned are: p;q;r;:p; p_q;:p_ r;q_ r.

DEFINITION 3.1. A proof of a formula A in Frege sys-
tem F is a sequence of formulas A1; : : : ;Ar =A such that
`A1 and for all i> 1 there is some (possibly empty) sub-
set A � fA1; : : : ;Ai�1g such that A ` Ai is a substitution
instance of a rule of F .

DEFINITION 3.2. For a Frege proof Π, let cl(Π) denote
the closure of the set of formulas in Π under subformu-
las. The size of a Frege proof Π is jcl(Π)j, the total num-
ber of distinct subformulas that appear in the proof. The
depth of a proof is the maximum depth of the formulas
in the proof.

Let G= (V1[V2;E) be a bipartite graph where jV2j=
n and jV1j= m > n. We use L(G) to denote the language
built from the set of propositional variables fXe : e 2
Eg, the connectives f_;:g and the constants 0 and 1.

The following is a formulation of the onto and func-
tional weak pigeonhole principle on the graph G. Note
that if G is not the complete graph Km;n, then this princi-
ple is weaker than the standard onto and functional weak
pigeonhole principle.

DEFINITION 3.3. WPHP(G) is the OR of the following
four (merged forms of) formulas in L(G). In general,
i; j;k represent vertices in G and Γ(i) represents the set
of neighbors of i in G.

1.
W
(e;e0)2I:(:Xe _ :Xe0) for I = f(e;e0) : e;e0 2

E;e = fi;kg;e0 = f j;kg; i; j 2 V1; i 6= j;k 2 V2g:
two different pigeons go to the same hole.

2.
W
(e;e0)2I:(:Xe _ :Xe0) for I = f(e;e0) : e;e0 2

E;e = fk; ig;e0 = fk; jg; i; j 2 V2; i 6= j;k 2 V1g:
one pigeon goes to two different holes.

3.
W

i2V1
:
W

j2Γ(i)Xfi; jg: some pigeon has no hole.

4.
W

j2V2
:
W

i2Γ( j)Xfi; jg: some hole remains empty.

In fact, we consider an arbitrary orientation of the above
formula whereby each _ is binary.

4 Representing matchings by trees

In this section we make minor modifications to standard
definitions from [3, 21] to apply to the edge variables

given by bipartite graphs and not just complete bipartite
graphs.

Let G be a bipartite graph as in the last section and
let D denote the set of Boolean variables Xe in L(G).
Assume there is an ordering on the nodes of G.

DEFINITION 4.1. Two edges of G are said to be incon-
sistent if they share exactly one endpoint. Two partial
matchings ρ1;ρ2 on the graph G are said to be consistent
if no edge in ρ1 is inconsistent with an edge in ρ2. For a
partial matching ρ, let Im(ρ) denote the set of nodes of
V2 that are matched by ρ.

DEFINITION 4.2. For ρ a partial matching on the graph
G that matches nodes V 0

1 �V1 to nodes V 0
2 �V2, we de-

fine Gjρ as the bipartite graph ((V1 nV 0
1)[ (V2 nV 0

2);E�
(V 0

1�V2[V1�V 0
2)).

DEFINITION 4.3. A matching decision tree T for G is
a tree where each internal node u is labelled by a node
of G, v, and each edge from a node u is labelled by an
edge of G that touches v. Furthermore, given any path in
the tree from the root to a node u, the labels of the edges
along the path constitute a partial matching on G, called
path(u). Let path(T) = fpath(u) : u is a leaf of Tg. If
v is a node of G that appears as a label of some node in
T , then T is said to mention v.

Furthermore, each leaf of T is labelled by 0 or 1 (if a
tree satisfies the above conditions but its leaves remain
unlabelled, we will call it a leaf-unlabelled matching
decision tree). Let T c be the same as T except with
the value of each leaf-label flipped. If U is the set of
leaves of T labelled 1, let dis j(T ) be the DNF formula_

u2U

^

e2path(u)

Xe.

DEFINITION 4.4. A complete (leaf-unlabelled) match-
ing decision tree for G is one in which, for each internal
node u labelled v, the set fpath(u0) : u0 a child of ug
constitutes all matchings in G of the form path(u)[
ffv;v0gg for all v0 such that fv;v0g 2 E .

DEFINITION 4.5. Let K be a subset of the nodes in G.
The full matching tree for K over G is a leaf-unlabelled
matching decision tree for G defined inductively: if K =
fkg, then the root of the tree is labelled by k and, for
each edge e in G that touches k, there is an edge from
the root of the tree labelled e. If K contains more than
one node, let k be its largest node under the ordering
of nodes and assume we have a full matching tree for
K n fkg. For each (unlabelled) leaf u of this tree, let p
be the path from the root to u. The labels of the edges
along p constitute a partial matching on G. If this partial
matching touches k, leave u unlabelled. Otherwise, label
u by k and and attach an edge to u for each edge in G that
touches k and that extends the partial matching.
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Note that the full matching tree for any subset K is
complete. If the degree of each node in K is at least
jKj, then the full matching tree for K is guaranteed to
mention all nodes in K. Otherwise, it might not.

Lemma 1. Let T be a complete matching tree for G
and let ρ be any partial matching on G. Let d be the
minimal degree of any node in G mentioned by T . If
d > maxfjρj;height(T)g; then there is a matching in
path(T) that is consistent with ρ.

Proof. Assume we have found an internal node u in T
labelled by v in G such that path(u) is consistent with
ρ. We will find a child u0 of u such that path(u0) is still
consistent with ρ. Since the degree of v is greater than
the size of ρ, there is an edge fv;v0g in G such that fv;v0g
is either included in ρ (if ρ touches v) or extends ρ (if ρ
does not touch v). Since T is complete and the degree of
v is greater than height(T), the edge fv;v0g appears as a
label of an edge from u in T .

DEFINITION 4.6. We call F a matching disjunction if it
is one of the constants 0 or 1, or it is a DNF formula with
no negations over the variables D such that the edges of
G corresponding to the variables in any one term consti-
tute a partial matching. In the latter case, order the terms
lexicographically based on the nodes they touch and the
order of the nodes in G.

DEFINITION 4.7. For F a matching disjunction, the re-
striction F jρ for ρ a partial matching is another matching
disjunction generated from F as follows: set any vari-
able in F corresponding to an edge of ρ to 1 and set any
variable corresponding to an edge not in ρ but incident
to one of ρ’s nodes to 0. If a variable in term t is set to
0, remove t from F . Otherwise, if a variable in term t is
set to 1, remove that variable from t.

The DNF dis j(T ) for a matching decision tree T is
always a matching disjunction.

DEFINITION 4.8. A matching decision tree T is said to
represent a matching disjunction F if, for every leaf l
of T , F jpath(l) � 1 when l is labelled 1 and F jpath(l) � 0
when l is labelled 0.

A matching decision tree T always represents
dis j(T ). Furthermore, if ρ extends some matching
path(l) for l a leaf of T , then dis j(T )jρ � 0 (1, respec-
tively) if l is labelled 0 (1).

DEFINITION 4.9. Let F be a matching disjunction. We
define a tree TreeG(F) called the canonical decision tree
for F over G: if F is constant, then TreeG(F) is one node
labelled by that constant. Otherwise, let C be the first
term of F . Let K be the nodes of G touched by variables
in C. The top of TreeG(F) is the full matching tree on K

over G. We replace each leaf u of that tree, with the tree
TreeGjpath(u)

(F jpath(u)).

The tree TreeG(F) will have all of its leaves labelled.
It is designed to represent F and to be complete.

DEFINITION 4.10. For T a matching decision tree and
ρ a matching, T restricted by ρ, written T jρ, is a match-
ing decision tree obtained from T by first removing all
edges of T that are inconsistent with ρ, and retaining
only those nodes of T that remain connected to the root
of T . Each remaining edge that corresponds to an ele-
ment of ρ is then contracted (its endpoints are identified
and labelled by the label of the lower endpoint).

Lemma 2. ([21], Lemma 4.8) For T a matching deci-
sion tree and ρ a matching: (a) dis j(T )jρ � dis j(T jρ),
(b) (T jρ)c = T cjρ, and (c) If T represents a matching
disjunction F, then T jρ represents F jρ.

5 The lower bound

Let m = n + n= logc n for some integer c > 0 and let
h > 0 be an integer. We assume for simplicity that n
is large compared to c and that all subsequent expres-
sions are integers. We will show that for any a such that
8h(a + 3) < c, any proof of PHPm

n = WPHP(Km;n) of
depth h is of size greater than 2loga n. To do this we do
not work directly with proofs of WPHP(Km;n) but rather
we work with proofs of WPHP(G) for randomly chosen
subgraphs G of Km;n.

More precisely, let b = 8h(a+ 3), define d = logb n
and observe that a < b < c.

Let G(m;n;d=n) be the uniform distribution on all
bipartite graphs from m nodes to n nodes where each
edge is present independently with probability d=n.

Let H = (V1 [V2;E) be a fixed bipartite graph. De-
fine M`(H) to be the set of all partial matchings of size
` in H and for I �V2 with jIj= ` let M`

I (H) be the set of
all ρ 2M`(H) with Im(ρ) = I. Define a partial distribu-
tion M `(H) on M`(H) by first choosing a set I 2V2 uni-
formly at random among all subsets of V2 of size `, then
choosing a ρ 2 M`

I (H) uniformly at random; if M`
I (H)

is empty then no matching is chosen and the experiment
fails.

We now define several sequences of parameters for a
probabilistic experiment. The meanings of these param-
eters will be explained after the definition of the experi-
ment. For initial values, let m0 = m; n0 = n; b0 = b; and
k0 = 7b0=8; `0 = n0� n0= logk0 n. Then, for 1 � i � h,
we define recursively:
mi = mi�1 � `i�1, ni = ni�1 � `i�1, bi = bi�1 � ki�1,
ki = 7bi=8, and `i = ni�ni= logki n. In closed form,

ni = n=(logn)∑i�1
j=0 k j = n=(logn)b�b=8i

,
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mi = ni+(m�n), bi = b�∑i�1
j=0 k j = b=8i, ki = 7b=8i+1,

and `i = (1�1= logki n)(n=(logn)b�b=8i
).

Now we are ready to define the experiment: let
G0 = G be a graph chosen randomly from the distribu-
tion G(m;n;d=n). For 0 � i � h� 1, let ρi �M `i(Gi)
and define Gi+1 = Gijρi . (We say that the experiment
fails during stage i+1 if the partial distribution M `i(Gi)
fails to return an element ρi.) Observing that the choice
of ρi depends only on the edges of Gi that are incident
to Im(ρi) and these are among the edges of Gi that are
removed to produce Gi+1 we have:

Proposition 3. If this experiment succeeds up to stage i
then the distribution induced on Gi is G(mi;ni;d=n).

Thus, the expected degree of any pigeon in Gi is
nid=n = logbi n. The expected degree of any hole in
Gi is mid=n, which is between logbi n and 2logbi n since
ni < mi < 2ni (because c > b).

We make several observations about “bad” events in
this experiment; the first two follow from simple Cher-
noff bounds.

Lemma 4. For 0� i� h, the probability, given that the
experiment succeeds up to stage i, that any node in Gi

has degree greater than ∆i
de f
= 6logbi n is at most (mi +

ni)2
� logbi n < 2� logbi�1 n.

Lemma 5. For 0 � i � h and sufficiently large n, the
probability, given that the experiment succeeds up to
stage i, that any node in Gi has degree less than 1

2 logbi n

is at most (mi +ni)2�
1

16 logbi n < 2� logbi�1 n.

Lemma 6. For 0� i� h�1, the probability that the ex-
periment fails at stage i+1, given that it has succeeded
up to stage i is at most 2� logbi�2 n.

Proof Sketch. This is less than the probability that a ran-
dom graph G(mi;ni;d=n) does not contain a matching
of all holes. The bound follows by standard calculations
using nid=n = logbi n.

We now develop the switching lemma argument. The
overall structure uses the simplified counting techniques
of [18] and [3], however the statement and proof are both
complicated by the need to use probabilistic properties
of the formulas themselves as well as the relationship of
those properties to the restrictions under consideration.
We first need some definitions:

DEFINITION 5.1. For a bipartite graph H = (V1[V2;E)
and integers ` and ∆, let N`;∆(H) be the set of all ρ in
M`(H) such that all nodes of Hjρ have degree at most

∆. For a set I �V2 with jIj= ` let N`;∆
I (H) be the set of

elements ρ 2 N`;∆(H) with Im(ρ) = I.

Lemma 7. Let 0 � i < h and suppose that the exper-
iment succeeds up to stage i+ 1. Then the probability

that
jN

`i;∆i+1
Im(ρi)

(Gi)j

jM
`i
Im(ρi)

(Gi)j
< 1�2� logbi+1�2 n is at most 1=n.

Proof. Observe that the expectation of
jN

`i;∆i+1
Im(ρi)

(Gi)j

jM
`i
Im(ρi)

(Gi)j
con-

ditional on success up to stage i+1 is precisely the prob-
ability that ρi 2N`i;∆i+1(Gi) conditional on success up to

stage i+1 which is > 1�2� logbi+1�1 n by Lemma 4. The
result follows Markov’s inequality and by observing that

n �2� logbi+1�1 n < 2� logbi+1�2 n.

We are now ready to state the switching lemma.

Lemma 8 (Switching Lemma). Let i;s;r be any inte-
gers such that 0� i < h, 0 < s� ∆i+1= log3 n and r > 0.
Suppose that the experiment above succeeds up to stage
i+1, consider G and ρ0; : : : ;ρi resulting from this exper-
iment, and suppose that Gi has maximum degree at most
∆i. Finally, let F be any matching disjunction with con-
junctions of size � r over the edge-variables of Gi. The
probability that TreeGi+1(F jρi) has height � s condi-

tioned on the events ρi 2 N`i;∆i+1(Gi) and
jN

`i;∆i+1
Im(ρi)

(Gi)j

jM
`i
Im(ρi)

(Gi)j
�

1�2� logbi+1�2 n is at most 2
�

720r= logbi=2 n
�s=2

.

DEFINITION 5.2. Let stars(r; j) be the set of all se-
quences β = (β1; : : : ;βk) such that for each i, βi 2
f�;�gr nf�gr and the total number of �’s in β is j.

Lemma 9 ([3]). jstars(r; j)j < (r= ln2) j .

Lemma 10. For H a fixed bipartite graph with an or-
dering on its nodes, let F be a matching disjunction with
conjunctions of size � r over the edge-variables of H
and let S be the set of matchings ρ 2 N`;∆(H) such that
TreeHjρ(F jρ) has height � s. There is an injection from

the set S to the set
[

s=2� j�s

M`+ j(H)� stars(r; j)� [∆]s.

Furthermore, the first component of the image of ρ 2 S
is an extension of ρ.

Proof. Let F =C1_C2 _ : : :. If ρ 2 S, then let π be the
partial matching labelling the first path in TreeHjρ(F jρ)
of length� s (actually, we consider only the first s edges
in π, starting from the root, and hence we assume jπj=
s). Let Cν1 be the first term in F not set to 0 by ρ and
let K1 be the variables of Cν1 not set by ρ. Let σ1 be the
unique partial matching over K1 that satisfies Cν1 jρ and
let π1 be the portion of π that touches K1.

Now define β1 2 f�;�g
jK1j nf�gjK1j; so that the p-th

component of β1 is a � if and only if the p-th variable in
Cν1 is set by σ1.
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Continue this process to define πi, σi, Ki, etc. (re-
placing ρ with ρπ1 : : :πi�1 and π with πnπ1 : : :πi�1 until
some stage k when we’ve exhausted all of π. Let σ be
the matching σ1 : : :σk, and β be the vector (β1; : : : ;βk).
Let j = jσj be the number of edges in σ. Note that s=2�
j � s. Observe that β 2 stars(r;s) and ρσ 2 M`+ j;∆(H)
and is an extension of ρ.

We now encode the differences between all the cor-
responding πi and σi pairs in a single vector δ consisting
of jπj= s components, each in f1; : : : ;∆g. Let u1 be the
smallest numbered node in K1 and suppose that π (in
particular π1) matches u1 with some node v1. Then the
first component of δ is the natural number x such that v1

is the x-th neighbor (under the ordering of nodes) of u1

in the graph Hjρσ2σ3:::σk . More generally, until the mates
of all nodes in K1 under π1 have been determined, we de-
termine the p-th component of δ by finding the smallest
numbered node up of K1 n fu1; : : : ;up�1;v1; : : : ;vp�1g
and then we find its mate vp under π1 and encode the
position x of vp in the order of the neighbors of up in
Hjρσ2σ3:::σk . Once K1 (and thus π1) has been exhausted
the next component is based on the mates of the smallest
numbered nodes in K2 under π2, until that is exhausted,
etc. where the ordering about each vertex when dealing
with Ki is with respect to the graph Hjρσi+1σi+2:::σk .

Finally, we define the image of ρ 2 S under the in-
jection to be (ρσ;β;δ). To prove that this is indeed an
injection, we show how to invert it: Given ρσ1 : : :σk, we
can identify ν1 as the index of the first term of F that is
not set to 0 by it. Then, using β1 we can reconstruct σ1

and K1. Next, reading the components of δ and the graph
Hjρσ2:::σk , until all of K1 is matched, we can reconstruct
π1. Then we can derive ρπ1σ2 : : :σk.

At a general stage i of the inversion, we will know
π1; : : : ;πi�1 and σ1; : : : ;σi�1 and K1; : : : ;Ki�1. We use
ρπ1 : : :πi�1σi : : :σk to identify νi and, hence, σi and Ki

(using β). Then we get πi from δ, Ki, and ρσi+1 : : :σk.
After k stages, we know all of σ and can recover ρ.

Proof of Lemma 8. Let Ri be the set of ρi 2 N`i;∆i+1(Gi)

such that
jN

`i;∆i+1
Im(ρi)

(Gi)j

jM
`i
Im(ρi)

(Gi)j
� 1� 2� logbi+1�2 n. By Lemma 7,

the total probability of Ri under distribution M `i(Gi) is

at least (1�1=n)(1�2� logbi+1�2 n)� 1�2=n.
By Lemma 10 with H  Gi, ` `i, and ∆ ∆i+1,

a bad ρi 2 Ri, for which TreeGi+1(F jρi) has height at
least s, can be mapped uniquely to a triple (ρ0;β;δ) 2
M`i+ j(Gi)�stars(r; j)� [∆i+1]

s where ρ0 extends ρi, for
some integer j 2 [s=2;s]. We compute the probability of
such ρi 2 Ri associated with a given j and then sum up
the probabilities and divide by the probability of Ri to
compute the desired probability.

We analyze the total probability of bad ρi 2 Ri as-

sociated with a given j by comparing the probabil-
ity of ρi under M `i(Gi) and the probability of ρ0 un-
der M `i+ j(Gi). Since the total probability of all ρ0 2
M`i+ j(Gi) under M `i+ j(Gi) is at most 1 this will allow
us to compute the desired bound.

Let I = Im(ρi) and I0 = Im(ρ0). By definition, I � I0.
Also, by definition, the ratio of the probability of ρi

under M `i(Gi) to that of ρ0 under M `i+ j(Gi) is precisely� ni
`i+ j

�
jM`i+ j

I0 (Gi)j�ni
`i

�
jM`i

I (Gi)j
:

Now any matching τ0 2 M`i+ j
I0 (Gi) is an extension of

some unique matching τ 2 M`i
I (Gi). If τ 2 N`i;∆i+1

I (Gi)
then the degrees of all nodes in Gijτ are at most ∆i+1 and
so at there are at most ∆ j

i+1 matchings τ0 2 M`i+ j
I0 (Gi)

extending τ. If τ =2 N`i;∆i+1
I (Gi) then the degrees of

all nodes in Gijτ are at most ∆i because that is true of
Gi itself by assumption. Therefore there are at most
∆ j

i extensions τ0 2 M`i+ j
I0 (Gi) of τ. Since ρi 2 Ri,

jN`i;∆i+1
I (Gi)j=jM

`i
I (Gi)j is at least 1� 2� logbi+1�2 n so

the probability ratio is at most� ni
`i+ j

�
�ni
`i

� [(1�2� logbi+1�2 n)∆ j
i+1 +2� logbi+1�2 n∆ j

i ]

�

"
1+21�logbi+1�2 n

�
∆i

∆i+1

� j
#�

∆i+1(ni� `i)

`i

� j

<
h
1+21�∆i+1=(6 log2 n)(logn)kis

i� ∆i+1ni

`i logki n

� j

<
h
1+21�∆i+1=(6 log2 n)(logn)ki∆i+1= log3 n

i� ∆i+1ni

`i logki n

� j

<

�
2∆i+1

logki n

� j

=

 
12logbi+1 n

logki n

! j

:

The first two inequalities follow from j � s �
∆i+1= log3 n and the definitions of ∆i and ∆i+1. The third
inequality follows since 12ki log logn < logn for n suf-
ficiently large and the fact that ni=`i = 1=(1�1= logki n)
which is close to 1. Therefore the total probability of
bad ρi 2 Ri associated with a given j is at most

(12logbi+1�ki n) j� (r= ln2) j�∆s
i+1

� (20r logbi+1�ki n) j� (6logbi+1 n)s:

Thus the total probability in question is at most

(1�2=n)�1(6logbi+1 n)s� ∑
s=2� j�s

(20r logbi+1�ki n) j:

Since bi+1 = bi � ki and without loss of generality
20r logbi�2ki n < 1=3 (otherwise the probability bound
in the lemma statement is meaningless), this quantity
is at most 2(720r log3bi�4ki n)s=2 � 2(720r= logbi=2 n)s=2

since 3bi�4ki =�bi=2.
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DEFINITION 5.3. Let SG be a set of formulas of depth at
most h that is closed under subformulas and defined over
the graph G. For ρ = ρ0 : : :ρh�1, we define, for every
0 � i < h, Tρ0:::ρi , a mapping from formulas with depth
� i+ 1 in SG to matching decision trees. It is defined
inductively as follows:

For a variable Xe, Tρ0(Xe) is TreeG(Xe)jρ0 . Fur-
thermore, Tρ0(:Xe) is (Tρ0(Xe))

c. For A a depth-
1 formula with merged form

W
e2I Xe, Tρ0(A) is

TreeG1((
W

e2I Xe)jρ0).
For 0 < i < h, for all formulas A of depth < i+ 1,

Tρ0:::ρi(A) is Tρ0:::ρi�1(A)jρi . For a formula A of depth
i + 1, if A = :B, then Tρ0:::ρi(A) is (Tρ0:::ρi(B))

c, and
otherwise, if the merged form of A is

W
j2J B j, let

F be the matching disjunction
W

j2J dis j(Tρ0:::ρi�1(B j))
and let Tρ0:::ρi(A) be the canonical matching tree
TreeGi+1(F jρi).

From the definition of Tρ, we have that if :A is a for-
mula in SG, then Tρ(:A) = (Tρ(A))c. Also, by lemma 2,
if
W

i2I Ai is the merged form of some formula A in SG,
then Tρ(A) represents

W
i2I dis j(Tρ(Ai)).

Lemma 11. Let a and h be positive integers. For
each graph G, let SG be a set of formulas closed un-
der subformulas defined on the variables of G such that
jSGj � 2loga n and each formula A2 SG has depth at most
h. For n sufficiently large in a and h, there exists a choice
of G and ρ = ρ0; : : : ;ρh�1 as defined above such that the
following conditions hold:
1. Tρ(A) has height at most loga n for all A 2 SG, and
2. every node in Gh has degree at least loga+1 n.

Proof. We proceed using the probabilistic method and
the experiment above. For 0� i � h, define the follow-
ing events:
Ei: The experiment succeeds up to stage i.
Ai: Every node in Gi has degree at most ∆i = 6logbi n.
Bi: Every node in Gi has degree at least (1=2) logbi n.

Ci:
jN

`i ;∆i+1
Im(ρi)

(Gi)j

jM
`i
Im(ρi)(Gi)j

� 1�2� logbi+1�2 n. Here i < h.

Di(A): Tρ0:::ρi�1(A) has height at most loga n for some
formula A 2 SG of depth at most i. Here i� 1.
Di: for all formulas A 2 SG of depth at most i, Di(A)
holds. Here i� 1.

We compute an upper bound on the probability that
any of these events fails to be true and prove that this
probability is strictly less than 1. Since bh = a + 3,
if both Eh and Bh occur and Di(A) occurs for each
i = 1; : : : ;h and each A2 SG of depth i then the claims of
the lemma are satisfied for that (G;ρ), so this probability
bound suffices.

Now by Lemma 6, Pr[:Ei+1 j Ei] < 2� logbi�2 n,

Lemma 4, Pr[:Ai j Ei] < 2� logbi�1 n and by Lemma 5,

Pr[:Bi j Ei] < 2� logbi�1 n. Furthermore, by Lemma 7,
Pr[:Ci j Ei+1] � 1=n. Let A 2 SG be of depth i < h
with the merged form of A equal to

W
j2J Q j and let F

be the matching disjunction
W

j2J dis j(Tρ0:::ρi�1(Q j)).
Observing that bh = b=8h = (a + 3), by Lemma 8
applied to F with r = s = loga n� ∆h= log3 n, we have

Pr[:Di+1(A) j Ei+1^Ai^Di^Ai+1^Ci]

� 2(720= logbi=2�a n)(loga n)=2

� 2(720= logbh�1=2�a n)(loga n)=2

� 2(720= log3a+3 n)(loga n)=2 < 2� loga n=n

for n sufficiently large. Therefore, Pr[:Di+1 j Ei+1 ^
Ai^Di^Ai+1^Ci]� 1=n since each SG contains at most
2loga n disjunctions of depth i+1.

Therefore the total probability that some Ei, Ai, Bi,
Ci, or Di fails is at most:

h�1

∑
i=0

Pr[:Ei+1 j Ei]+
h

∑
i=0

Pr[:Ai j Ei]

+
h

∑
i=0

Pr[:Bi j Ei]+
h�1

∑
i=0

Pr[:Ci j Ei+1]

+ Pr[:D1 j E1^A0^A1^C0]

+ Pr[:D2 j E2^A1^D1^A2^C1]+ � � �

+ Pr[:Dh j Eh^Ah�1^Dh�1^Ah^Ch�1]:

In total there are 5h+2 terms in this sum, each of which
is at most 1=n, and thus the whole probability is < 1.

From now on, we fix a graph G and a restriction ρ =
ρ0; : : : ;ρh�1 obeying the conditions of Lemma 11 when
applied to the sets of formulas in SG = cl(ΠG) where
each ΠG is a proof of WPHP(G) in a proof system F
whose largest rule has size f .

The following three lemmas are adapted from [21].

Lemma 12. Let C be a line in a Frege proof Π. Let A
be the immediate ancestors of C in the proof (if there are
any), so that A `C. Let B be the subformulas of A and
C mentioned in the application of the rule which derives
C from A . Let Γ = A [B [fCg. Note that by our bound
on the size of rules in F , jΓj+1� f . Finally, let σ be a
matching which extends soundly some σA 2 path(Tρ(A))
for each A2A , some σB 2 path(Tρ(B)) for each B 2B ,
and some σC 2 path(Tρ(C)). If dis j(Tρ(A))jσ � 1 for
all A 2 A , then dis j(Tρ(C))jσ � 1.

Proof. First note the following facts, where α;β 2 Γ
and D(α) is an abbreviation for dis j(Tρ(α)):
� D(α)jσ � 0 or D(α)jσ � 1

� If :α 2 Γ, then D(:α)jσ � 1 iff D(α)jσ � 0.

� If (α_β) 2 Γ, then D(α_β)jσ � 1 iff D(α)jσ � 1
or D(β)jσ � 1
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Now consider the rule R used to derive C formulated
as in the examples from section 3. The application of
R substitutes subformulas Ap;Aq;Ar; : : : in Γ for each of
the atoms p;q;r; : : : in R and there is a derived correspon-
dence mapping subformulas F appearing in R to formu-
las AF 2 Γ. Define a function τ on the atoms of R by
τ(p) = D(Ap)jσ for each such atom p. By the first prop-
erty, τ is a truth assignment to these atoms. Furthermore,
by the other two properties, the truth assignment τ ex-
tends to all subformulas F in R so that τ(F) = D(AF)jσ.
Since R is sound, if τ satisfies all formulas in A it will
satisfy C and thus D(C)jσ � 1.

Lemma 13. Let F be a Frege system with maximum
rule size f . Let n be sufficiently large w.r.t. f . Let
a;h > 0. For each G, assume that ΠG is a proof in F
of WPHP(G) of size at most 2loga n and depth at most
h. Let ρ and G be as defined in Lemma 11 applied with
SG = cl(ΠG). If C is an arbitrary line in proof ΠG then
all leaves of Tρ(C) are labelled by 1.

Proof. We proceed by (complete) induction on the lines
in the proof. Assume every leaf of Tρ for any line pre-
ceding C is labelled 1. Let A , B , Γ be as in Lemma 12.
For any leaf l of Tρ(C), we use Lemma 1 to find σ that
extends path(l) and extends a matching in each of the
sets path(Tρ(A)) for all A 2 A and path(Tρ(B)) for all
B 2 B . This is possible since there are at most f trees to
consider and by Lemma 11 the sum of their heights is at
most f loga n� loga+1 n which is the degree of Gh.

By assumption, dis j(Tρ(A))jσ � 1 for all A in A .
Hence, by Lemma 12, dis j(Tρ(C))jσ � 1, so l must be
labelled 1.

Lemma 14. All leaves of Tρ(WPHP(G)) have label 0.

Proof. It suffices to show that Tρ applied to each of the
following types of formulas has all leaves labelled 0:

1. :(:Xe _ :Xe0) for e;e0 2 E;e = fi;kg;e0 =
f j;kg; i; j 2V1; i 6= j;k 2V2:

2. :(:Xe _ :Xe0) for e;e0 2 E;e = fk; ig;e0 =
fk; jg; i; j 2V2; i 6= j;k 2V1:

3. :
W

j2Γ(i)Xfi; jg for i 2V1:

4. :
W

i2Γ( j)Xfi; jg for j 2V2:

In fact, we will show that Tρ applied to the complement
of each of these formulas has all leaves labelled 1.

For a formula of the first type, T = Tρ(:Xe _:Xe0)
must represent dis j(Tρ(:Xe)) _ dis j(Tρ(:Xe0)). If ρ
sets the value of either Xe or Xe0 then it must set one of
:Xe or :Xe0 to 1 and thus all leaves of Tρ(:Xe _:Xe0)
are certainly labelled 1. Otherwise, for l a leaf of T ,
path(l) cannot contain both e and e0. Without loss of
generality it does not contain e. By Lemma 1 applied

to graph Gh we can find σ that extends path(l) and is
an extension of some matching in Tρ(:Xe). But then
dis j(Tρ(:Xe))jσ � 1, so l must be labelled 1. The argu-
ment is the same for formulas of the second type.

For a formula of the third type, T = Tρ(
W

j2Γ(i)Xfi; jg)
must represent

W
j2Γ(i) dis j(Tρ(Xfi; jg)). Hence, if ρ sets

Xfi; jg to 1 for some j 2 Γ(i), then all leaves of T are cer-
tainly labelled 1. Otherwise, for a leaf l of T , if path(l)
touches node i, then

W
j2Γ(i) dis j(Tρ(Xfi; jg))jpath(l) � 1.

Finally, if path(l) does not touch node i, extend it to
σ = path(l)[fi; jg for some j such that Xfi; jg is not set
by ρ. Then dis j(Tρ(Xfi; jg))jσ � 1, so l is labelled 1.
Formulas of the fourth type follow in the same way.

Theorem 15. Given any c sufficiently large, there exists
a bipartite graph G from m = n+n= logc n pigeons to n
holes such that there is no depth-h, 2loga n-size F -proof
of WPHP(G) provided that 8h(a+3)< c.

Proof. Assume that for all such G, there is a proof ΠG of
the required depth and size. For the G in Lemma 11 and
its corresponding proof ΠG of W PHP(G), there exists a
ρ such that Tρ(A) has all leaves labelled 1 for any A 2
cl(ΠG), but Tρ(W PHP(G)) has all leaves labelled 0. If
ΠG is to be a proof of WPHP(G), then WPHP(G) must
appear in ΠG, so we have a contradiction.

Corollary 16. Given any c sufficiently large, there is no
depth-h, 2loga n-size F -proof of WPHP = WPHP(Km;n)
from m = n+n= logc n pigeons to n holes, provided that
8h(a+3)< c.

6 Open questions

Among the many unresolved proof complexity ques-
tions regarding the pigeonhole principle (see [19]) the
most important open problem is to resolve the complex-
ity of the weak pigeonhole principle with 2n or more pi-
geons, and n holes. This would have many implications
for: the metamathematics of the P versus NP statement,
the complexity of approximate counting, and the proof-
theoretic strength underlying elementary number theory.

In the proof presented here, we derived a switching-
lemma using simple restrictions that limit the space of
truth assignments to a subcube where certain variables
are set to 0 or to 1. While this fails with 2n pigeons,
a more general class of restrictions may suffice. Pos-
sible generalizations include the projections suggested
in [22], which also allow identification of variables, or
restrictions given by linear equations. Two important
results ([12] and [6]) for bounded-depth Frege systems
already employ such generalized switching lemmas in
cases where direct restrictions fail (although the latter
use is implicit). Bounded-depth Frege reductions, such
as those in [6] may also be useful for resolving the 2n
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to n case; conversely, via reductions, generalizing our
weak pigeonhole principle bounds to a class of graphs
with more pigeons and smaller degree would yield lower
bounds for random CNFs.

A potentially simpler problem that still gets to the
heart of the matter is to prove quasipolynomial lower
bounds for Res(polylog n) proofs of the weak pigeon-
hole principle which would match the upper bounds in
[14]. It is conceivable that this could be achieved by
proving lower bounds for Res(k) proofs of the weak pi-
geonhole principle for larger and larger k, extending the
exponential lower bound for Res(2) in [2]; but new tech-
niques seem to be needed.
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