
Surv ey Propagation Revisited

Luk as Kro c Ashish Sabharw al Bart Selman

Department of Computer Science,Cornell University, Ithaca, NY 14853-7501,U.S.A.�

f kroc,sabhar,selman g@cs.cornell.edu

Abstract

Survey propagation (SP) is an exciting new
technique that has beenremarkably success-
ful at solving very large hard combinatorial
problems, such as determining the satis�a-
bilit y of Boolean formulas. In a promising
attempt at understanding the successof SP,
it was recently shown that SP can be viewed
as a form of belief propagation, computing
marginal probabilities over certain objects
called covers of a formula. This explana-
tion was, however, shortly dismissedby ex-
periments suggestingthat non-trivial covers
simply do not exist for large formulas. In
this paper, we show that these experiments
were misleading: not only do covers exist for
large hard random formulas, SP is surpris-
ingly accurate at computing marginals over
these covers despite the existence of many
cycles in the formulas. This re-opens a po-
tentially simpler line of reasoningfor under-
standing SP, in contrast to somealternativ e
lines of explanation that have beenproposed
assumingcovers do not exist.

1 INTR ODUCTION

Survey Propagation (SP) is a new exciting algorithm
for solving hard combinatorial problems. It was dis-
covered by Mezard, Parisi, and Zecchina (2002), and
is so far the only known method successfulat solving
random Boolean satis�abilit y (SAT) problems with 1
million variablesand beyond in near-linear time in the
hardest region. The SP method is quite radical in that
it tries to approximate certain marginal probabilities
related to the set of satisfying assignments. It then
iterativ ely assignsvalues to variables with the most

� Research supported by Intelligent Info. SystemsInstt.
(I ISI), Cornell Univ., AFOSR grant FA9550-04-1-0151.

extreme probabilities. In e�ect, the algorithm be-
haveslike the usual backtrack search methods for SAT
(DPLL-based), which alsoassignvariable valuesincre-
mentally in an attempt to �nd a satisfying assignment.
However, quite surprisingly, SP almost never has to
backtrack. In other words, the \heuristic guidance"
from SP is almost always correct. Note that, interest-
ingly, computing marginals on satisfying assignments
is actually believed to be much harder than �nding
a single satisfying assignment (#P-complete vs. NP-
complete). Nonetheless,SP is able to e�cien tly ap-
proximate certain marginals and usesthis information
to successfully�nd a satisfying assignment.

SP wasderived from rather complexstatistical physics
methods, speci�cally , the so-calledcavit y method de-
velopedfor the study of spin glasses.Closeconnections
to belief propagation (BP) methods weresubsequently
discovered. In particular, it was discovered by Braun-
stein and Zecchina (2004) (later extendedby Maneva,
Mossel,and Wainwright (2005)) that SP equationsare
equivalent to BP equations for obtaining marginals
over a special class of combinatorial objects, called
covers. Intuitiv ely, a cover provides a representativ e
generalization of a cluster of satisfying assignments.
The discovery of a close connection between SP and
BP via the use of covers laid an exciting foundation
for explaining the successof SP. Unfortunately, subse-
quent experimental evidencesuggestedthat hard ran-
dom 3-SAT formulas have, with high probabilit y, only
one (trivial) cover (Maneva et al., 2005). This would
leaveall variablese�ectiv ely in an undecidedstate, and
would mean that marginals on covers cannot provide
any useful information on how to set variables. Since
SP clearly sets variables in a non-trivial manner, it
was conjectured that there must be another explana-
tion for the good behavior of SP; in particular, one
that is not basedon the useof marginal probabilities
of variables in the covers.

In this paper, we revisit the claim that hard random 3-
SAT formulas do not have interesting non-trivial cov-

ers. In fact, we show that such formulas have large
numbers of non-trivial covers. The main contribution
of the paper is the �rst clear empirical evidenceshow-
ing that in random 3-SAT problems near the satis�-
abilit y and hardnessthreshold, (1) a signi�cant num-
ber of non-trivial covers exist; (2) SP is remarkably
good at computing variable marginals based on cov-
ers; and (3) thesecover marginals closely relate to so-
lution marginals at least in the extreme values,where
it matters the most for survey inspired decimation. As
a consequence,we strongly suspect that explaining SP
in terms of covers may be the correct path after all.

Note that (2) above is quite surprising for random
3-SAT formulas because such formulas have many
loops. The known formal proof that SP computes
cover marginals only applies to tree-structured formu-
las, which in fact have only a single (trivial) cover.
Further, it's amazing that while SP computes such
marginals in a fraction of a second,the next bestmeth-
ods of computing thesemarginals that we know of (via
exact enumeration, or sampling followed by \p eeling")
require over 100 CPU hours.

Our experiments also indicate that cover marginals
are more \conservative" than solution marginals in the
sensethat variables that are extreme with respect to
cover marginals are almost certainly alsoextremewith
respect to solution marginals, but not vice versa. This
shedslight on why it is safe to set variables with ex-
treme cover marginals in an iterativ e manner, as is
donein the survey inspired decimation processfor �nd-
ing a solution using the marginals computed by SP.

In addition to these empirical results, we also revisit
the derivation of the SPequationsthemselves,with the
goal of presenting the derivation in an insightful form
purely within the realm of combinatorial constraint
satisfaction problems (CSPs). We describe how one
can reformulate in a natural step-by-step manner the
problem of �nding a satisfying assignment into one of
�nding a cover, by considering related factor graphs
on larger state spaces.The BP equations for this re-
formulated problem are exactly the SP equations for
the original problem, as shown in the Appendix.

2 COVERS OF CNF FORMULAS

We start by intro ducing the notation and the ba-
sic concepts that we use throughout the paper. We
are concernedwith Boolean formulas in Conjunctive
Normal Form or CNF, that is, formulas of the form
F � (l11 _ : : : _ l1k1) ^ : : : ^ (lm 1 _ : : : _ lmk m), where
each l ik (called a literal) is a Boolean variable x j or
its negation : x j . Each conjunct of F , which itself is
a disjunction of literals, is called a clause. In 3-CNF
or 3-SAT formulas, every clausehas 3 literals. Ran-

dom 3-SAT formulas over n variablesare generatedby
uniformly randomly choosing a pre-speci�ed number
of clausesover these n variables. The Boolean satis-
�abilit y problem is the following: Given a CNF for-
mula F over n variables, �nd a truth assignment � for
the variables such that every clausein F evaluates to
tr ue; � is called a satisfying assignmentor a solution
of F . We identify tr ue with 1 and f alse with 0.

A truth assignment to n variables can be viewed as a
string of length n over the alphabet f 0; 1g, and extend-
ing this alphabet to include a third letter \ � " leadsto
a generalized assignment. A variable with the value �
can be interpreted as being \undecided," while vari-
ables with values 0 or 1 can be interpreted as being
\decided" on what they want to be. We will be inter-
estedin certain generalizedassignments called covers.
Our formal de�nition of coversfollows the onegivenby
Achlioptas and Ricci-Tersenghi(2006). Let variable x
be called a supported variable under a generalizedas-
signment � if there is a clause C such that x is the
only variable that satis�es C and all other literals of
C are f alse . Otherwise, x is called unsupported.

De�nition 1. A generalizedassignment � 2 f 0; 1; �g n

is a cover of a CNF formula F i�

1. every clauseof F hasat least onesatisfying literal
or at least two literals with value � under � , and

2. � has no unsupported variables assigned0 or 1.

The �rst condition ensuresthat each clause of F is
either already satis�ed by � or has enoughundecided
variables to not causeany undecided variable to be
forced to decide on a value (no \unit propagation").
The secondcondition says that each variable that is
assigned0 or 1 is set that way for a reason: there
exists a clause that relies on this setting in order to
be satis�ed. For example, consider the formula F �
(x _ : y _ : z) ^ (: x _ y _ : z) ^ (: x _ : y _ z). F has
exactly two covers: 111and � � � . This can be veri�ed
by observing that whenever some variable is 0 or � ,
then all non-� variables are unsupported. Notice that
the string of all � 's always satis�es the conditions in
De�nition 1; we refer to this string asthe trivial cover.

Covers were intro duced by Maneva et al. (2005) as
a useful concept to analyze the behavior of SP, but
their combinatorial properties are much less known
than those of solutions. A cover can be thought of as
a partial assignment to variables, where the variables
assigned� are consideredunspeci�ed. In this sense,
each cover is a representativ e of a potentially large set
of completetruth assignments, satisfying aswell asnot
satisfying. This motivates further di�eren tiation:

De�nition 2. A cover � 2 f 0; 1; �g n of F is a true
cover i� there exists a satisfying assignment � 2
f 0; 1gn of F such that � and � agreeon all valueswhere

� is not a � , i.e., 8i 2 f 1; : : : ; ng(� i 6= � =) � i = � i).
Otherwise, � is a false cover .

A true cover thus generalizesat least one satisfying
assignment. True coversare interesting to study when
trying to satisfy a formula, becauseif there exists a
true cover with variable x assigned0 or 1, then there
must also exist a satisfying assignment with the same
setting of x.

One can construct a true cover � 2 f 0; 1; �g n of F by
starting with any satisfying assignment � 2 f 0; 1gn of
F and generalizing it using a simple procedurecalled
� -propagation .1 The procedure starts by initially
setting � = � . It then repeatedly choosesan arbitrary
variable unsupported under � and turns it into a � ,
until there are no more unsupported variables. The re-
sulting string � is a true cover, which can be veri�ed as
follows. The satisfying assignment � already satis�es
the �rst condition in De�nition 1, and � -propagation
does not destroy this property. In particular, a vari-
able on which someclauserelies is never turned into a
� . The secondcondition in De�nition 1 is also clearly
satis�ed when � -propagation halts, so that � must be
a cover. Moreover, since � generalizes� , it is a true
cover. Note that � -propagation can, in principle, be
applied to an arbitrary generalizedassignment. How-
ever, unless we start with one that satis�es the �rst
condition in the cover de�nition, � -propagation may
not lead to a cover.

We end with a discussionof two insightful properties
of covers. The �rst relates to \self-reducibilit y" and
the secondto covers for tree-structured formulas.

No self-reducibilit y. Considerthe relation between
the decisionand search versionsof the problem of �nd-
ing a solution of a CNF formula F . In the decisionver-
sion, one needsan algorithm that determineswhether
or not F has a solution, while in the search version,
one needs an algorithm that explicitly �nds a solu-
tion. The problem of �nding a solution for F is self-
reducible, i.e., given an oracle for the decisionversion,
one can e�cien tly solve the search version by itera-
tiv ely �xing variables to 1 or 0, testing whether there
is still a solution, and continuing in this way. Some-
what surprisingly, this strategy doesnot work for the
problem of �nding a cover. In other words, an oracle
for the decision version of this problem does not im-
mediately provide an e�cien t algorithm for �nding a
cover. (The lack of self-reducibility makesit very hard
to �nd covers as we will seebelow.) As a concrete
example, consider the formula F described right after
De�nition 1. To construct a cover of F , we could ask

1This was intro duced under di�eren t namesas the peel-
ing procedure or coarsening,e.g., by Maneva et al. (2005).

whether there exists a cover with x set to 1. Since
111 is a cover (yet unknown to us), the decisionoracle
would say yes. We could then �x x to 1, simplify the
formula to (y_ : z) ^ (: y ^ z), and ask whether there is
a cover with y set to 0. This residual formula indeed
has 00 as a cover, and the oracle would say yes. With
one more query, we will end up with 100 as the values
of x; y; z, which is in fact not a cover of F .

Tree-structured form ulas. For tree-structured
formulas without unit clauses,i.e., formulas whosefac-
tor graph doesnot have a cycle, the only cover is the
trivial all-� cover. We argue this using the connec-
tion betweencovers and SP shown by Braunstein and
Zecchina (2004), which says that when generalizedas-
signments havea uniform prior, SPon a tree formula F
provably computes probabilit y marginals of variables
being 0, 1, and � in covers of F . Moreover, it can be
veri�ed from the iterativ e equations for SP that with
no unit clauses,zero marginals for any variable being
0 or 1, and full marginals for any variable being a � is
a �xed point of SP. SinceSP provably has exactly one
�xed point on tree formulas, it follows that the only
cover of such formulas is the trivial all-� cover.

3 PR OBLEM REF ORMULA TION:
FR OM SOLUTIONS TO COVERS

We now show that the concept of covers can be quite
naturally arrived at when trying to �nd solutions of
a CNF formula, thus motivating the study of covers
from a purely generative perspective. Starting with
a CNF formula F , we describe how F is transformed
step-by-step into the problem of �nding covers of F ,
motivating each step.

Although our discussionapplies to any CNF formula
F , we will be using the following exampleformula with
3 variables and 4 clausesto illustrate the steps:

(x _ y _ : z)
| {z }

a

^ (: x _ y)
| {z }

b

^ (: y _ z)
| {z }

c

^ (x _ : z)
| {z }

d

Let N denote the number of variables, M the number
of clauses,and L the number of literals of F .

Original problem. The problem is to �nd an as-
signment in the spacef 0; 1gN that satis�es F . The fac-
tor graph for F has N variable nodesand M function
nodes,corresponding directly to the variables x; y; : : :
and clausesa;b;: : : in F (see e.g. Kschischang et al.
(2001)). The factor graph for the example formula
is depicted below. Here factors Fa ; Fb; : : : represent
predicatesensuring that the corresponding clausehas
at least one satisfying literal.

FdFcFbFa

x y z

Variable occurrences. The �rst step in the trans-
formation is to start treating every variable occurrence
xa ; xb; ya ; yb; : : : in F asa separateunit that can be ei-
ther 0 or 1. This allows for more
exibilit y in the pro-
cessof �nding a solution, since a variable can decide
what value to assumein each clause separately. Of
course,we need to add constraints to ensurethat the
occurrencevalues are eventually consistent: for every
variable x in F , we add a constraint Fx that all occur-
rencesof x have the samevalue. Now the search space
is f 0; 1gL , and the corresponding factor graph contains
L variable nodesand M + N function nodes(the orig-
inal clausefactors Fa ; Fb; : : : and the new constraints
Fx ; Fy ; : : :).

Fx Fa Fb Fy Fc Fd Fz

zdzczaycybyaxdxbxa

At this point, we have not relaxed solutions to the
original problem F : solutions to the modi�ed problem
correspond precisely to the original solutions, because
variable occurrencesare forced to be consistent. How-
ever, we moved this consistencycheck from the syn-
tactic level (variablescould not be inconsistent simply
by the problem de�nition) to the semantic level (we
have special constraints to guarantee consistency).

Relaxing assignmen ts. The next step is to relax
the problem by allowing variable nodesto assumethe
special value \ � ". The semantics of � is \undecided,"
meaning that the variable node is set neither to 0
nor to 1. The new search spaceis f 0; 1; �g L , and we
must specify how our constraints handle the value � .
Variable constraints Fx ; : : : have the samemeaning as
before, namely, all variable nodes xa ; xb; : : : have the
same value for every variable x. Clause constraints
Fa ; : : : now have a modi�ed meaning: a clauseis sat-
is�ed if it contains at least one satisfying literal or at
least two literals with the value � . The motivation here
is to either satisfy a clauseor leave enough\freedom"
in the form of at least two undecided variables. (A
singleundecidedvariable would be forced to take on a
particular value if all other literals in the clausewere
falsi�ed.) With this transformation, the factor graph
remainsstructurally the same,while the set of possible

valuesfor variable nodeschanges.

The solutions to this modi�ed problem do not neces-
sarily correspond directly to solutions of the original
one. In particular, if there are no unit clausesand all
variables are set to � , the problem is already \solved"
without providing any useful information.

Reducing freedom of choice. To distinguish vari-
ables that could assumethe value � from those that
truly needto be �xed to either 0 or 1, we require that
every non-� variable has a clausethat needsthe vari-
able to be 0 or 1 in order to be satis�ed. The search
spacedoesnot change,but we needto add constraints
to implement the reduction in the freedomof choice.

Notice that this requirement is equivalent to \no un-
supported variables" in the de�nition of a cover, and
that the �rst requirement in that de�nition is ful-
�lled by the clauseconstraints. Therefore, we are now
searching for covers of F . A natural way to represent
the \no unsupported variable" constraint in the fac-
tor graph is to add for each variable x a new function
node F 0

x , connectedto the variable nodesfor x as well
as for all other variablessharing a clausewith x. This,
of course,createsmany new links and intro ducesad-
ditional short cycles,even if the original factor graph
was acyclic. The following transformation step allevi-
ates this issue.

Rein terpreting variable nodes. As the �nal step,
we change the semantics of the variable nodes' val-
ues and of the constraints so that the \no unsup-
ported variable" condition canbeenforcedwithout ad-
ditional function nodes. The reasoningis that the sim-
ple f 0; 1; �g domain createsa bottleneck for how much
information can be communicated between nodes in
the factor graph. By altering the semantics of the
variable nodes' values,we can improve on this.

The new value of a variable node xa will be a pair
(r a! x ; wx ! a) 2 f (0; 0); (0; 1); (1; 0)g, so that the size
of the search spaceis still 3L . We interpret the value
r a! x as a requestfrom clausea to variable x with the
meaning that a relies on x to satisfy it, and the value
wx ! a asa warning from variable x to clausea that x is
set such that it doesnot satisfy a. The values1 and 0
indicate presenceand absence,resp., of the requestor
warning. We can recover the original f 0; 1; �g values
from thesenew valuesas follows: if r a! x = 1 for some
a, then x is set to satisfy clausea; if there is no request
from any clausewhere x appears, then x is undecided
(a value of � in the previous interpretation). The vari-
able constraints Fx ; : : : not only ensureconsistencyof
the values of xa ; xb; : : : as before, but also ensurethe
secondcover condition asdescribed below. The clause
constraints Fa ; : : : remain unchanged.

The variable constraint Fx is a predicate ensuringthat
the following two conditions are met:

1. if r a! x = 1 for any clause a where x appears,
then wx ! b = 0 for all clausesb where x appears
with the samesign as in a, and wx ! b = 1 for all
b wherex appearswith the opposite sign. Sincex
must be set to satisfy a, this ensuresthat clauses
that are unsatis�ed by x do receive a warning.

2. if r a! x = 0 for all clausesa wherex appears,then
wx ! a = 0 for all of them, i.e., no clausereceives
a warning from x.

To evaluate Fx , values (r a! x ; wx ! a) are neededonly
for clausesa in which x appears,which is exactly the
set of variable nodesthe factor Fx is connectedto. No-
tice that the case(r a! x ; wx ! a) = (1; 1) cannot happen
due to condition 1 above. The conditions also imply
that the variable occurrencesof x areconsistent, and in
particular that two clauseswherex appearswith oppo-
site signs(say a and b) cannot simultaneously request
to be satis�ed by x. This is becauseeither r a! x = 0
or r b! x = 0 must hold due to condition 1.

The clause constraint Fa is a predicate stating that
clausea issuesa requestto its variable x if and only if it
receiveswarnings from all its other variables: r a! x = 1
i� wy! a = 1 for all variables y 6= x in a. Again, Fa

canbeevaluated usingexactly valuesfrom the variable
nodes it is connectedto.

When clause a issues a request to variable x (i.e.,
r a! x = 1), x must be set to satisfy a, thus providing a
satisfying literal for a. If a doesnot issueany request,
then according to the condition of Fa , at least two of
a's variables, say x and y, must not have sent a warn-
ing. In this case,Fx and Fy state that each of x and
y is either undecidedor satis�es a. Thus the �rst con-
dition in the cover de�nition holds in any solution of
this new constraint satisfaction problem. The second
condition also holds, becauseevery variable x that is
not undecidedmust have received a requestfrom some
clausea, so that x is the only literal in a that is not
f alse . Therefore x is supported.

Let us denotethis �nal constraint satisfaction problem
by P(F). (It is a function of the original formula F .)
Notice that the factor graph of P(F) has the same
topology as the factor graph of F . In particular, if
F has a tree factor graph, so doesP(F). Further, by
the construction of P(F) describedabove, its solutions
correspond precisely to the covers of F .

3.1 INFERENCE OVER CO VERS

This section discussesan approach for solving the
problem P(F) with probabilistic inferenceusing belief
propagation (BP). It arrivesat the survey propagation

equations for F by applying BP equations to P(F).

Since the factor graph of P(F) can be easily viewed
as a BayesianNetwork (cf. Pearl, 1988), one can com-
pute marginal probabilities over the set of satisfying
assignments of the problem, de�ned as

Pr[xa = v j all constraints of P(F) are satis�ed]

for each variable node xa and v 2 f (0; 0); (0; 1); (1; 0)g.
The probabilit y spacehere is over all assignments to
variable nodeswith uniform prior.

Once these solution marginals are known, we know
which variables are most likely to assumea particular
value, and setting these variables simpli�es the prob-
lem. A new set of marginals can be computed on this
simpli�ed formula, and the whole processrepeated.
This method of searching for a satisfying assignment
is called the decimation pro cedure . The problem,
of course,is to compute the marginals (which, in gen-
eral, is much harder than �nding a satisfying assign-
ment). One possibility for computing marginals is to
usethe belief propagation algorithm (cf. Pearl, 1988).
Although provably correct essentially only for formulas
with a tree factor graph, BP provides a good approxi-
mation of the true marginals in many problem domains
in practice (Murphy et al., 1999). Moreover, as shown
by Maneva et al. (2005), applying the BP algorithm to
the problem of searching for covers of F results in the
SP algorithm. Thus, on formulas with a tree factor
graph, the SP algorithm provably computesmarginal
probabilities over covers of F , which are equivalent to
marginals over satisfying assignments of P(F). When
the formula contains loops, SP computes a loopy ap-
proximation to the cover marginals. Speci�c details of
the derivation of SP equationsfrom the problem P(F)
are deferred to the Appendix.

4 EXPERIMENT AL RESUL TS

This section presents our main contributions. We be-
gin by demonstrating that non-trivial covers do ex-
ist in large numbers in random 3-SAT formula, and
then explore connections between SP, BP, and vari-
able marginals computed from covers as well as so-
lutions, showing in particular that SP approximates
cover marginals surprisingly well.

4.1 EXISTENCE OF CO VERS

Motiv ated by theoretical results connectingSP to cov-
ers of formulas, Maneva et al. (2005) suggestedan
experimental study to test whether non-trivial covers
even exist in random 3-SAT formulas. They proposed
a seeminglygood way to do this (the \p eeling experi-
ment"), namely, start with a uniformly random satisfy-

ing assignment of a formula F and, while it hasunsup-
ported variables, � -propagate the assignment. When
the processterminates, one obtains a (true) cover of
F . Unfortunately, what they observed is that this pro-
cessrepeatedly hits the trivial all-� cover, from which
they concluded that non-trivial covers most likely do
not exist for such formulas. However, it is known that
near-uniformly sampling solutions of such formulas to
start with is a hard problem in itself and that most
sampling methods obtain solutions in a highly non-
uniform manner (Wei et al., 2004). Consequently , one
must be careful in drawing conclusionsfrom relatively
few and possibly biasedsamples.

0 1000 2000 3000 4000 5000

0
20

0
40

0
60

0
80

0
10

00

Number of stars

N
um

be
r

of
 u

ns
up

po
rt

ed
 v

ar
ia

bl
es

Solutions leading to the trivial cover
Solutions leading to non-trivial covers

Figure 1: The peeling experiment, showing the evolu-
tion of the number of stars as � -propagation proceeds.

To understand this issuebetter, we ran the samepeel-
ing experiment on a 5000variable random 3-SAT for-
mula at clause-to-variable ratio 4.2 (which is closeto
the hardnessthreshold for random 3-SAT problems),
but used SampleSat (Wei et al., 2004) to obtain sam-
ples, which is expected to produce fairly uniform sam-
ples. Figure 1 shows the evolution of the number of
unsupported variables at each stage as � -propagation
is performed starting from a solution. Here, the
x-axis shows the number of stars, which monotoni-
cally increasesby � -propagation. The y-axis shows
the number of unsupported variables present at each
stage. As one moves from left to right following the
� -propagation process, one hits a cover if the num-
ber of unsupported variables drops to zero (so that
� -propagation terminates). The two curvesin the plot
correspond to solutions that � -propagated to the triv-
ial cover and those that did not. In our experiment,
out of 500satisfying assignments used,nearly 74%led
to the trivial cover; their averageis represented by the
top curve. The remaining 26% of the sampled solu-
tions actually led to non-trivial covers; their average
is represented by the bottom curve. Thus, when so-
lutions are samplednear-uniformly, a substantial frac-
tion of them lead to non-trivial covers.2

2 That this was not observed by Maneva et al. (2005)
can be attributed to the fact that SP was used to �nd
satisfying assignments (Mossel, 2007), resulting in highly
non-uniform samples.

2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Clause-to-variable ratio

P
[n

on
-t

riv
ia

l c
ov

er
]

90 vars
70 vars
50 vars

2.0 2.5 3.0 3.5 4.0 4.5

0
20

40
60

80
10

0

Clause-to-variable ratio

N
um

be
r

of
 n

on
-t

riv
ia

l c
ov

er
s

90 vars
70 vars
50 vars

Figure 2: Non-trivial covers in random formulas. Left:
existenceprobabilit y. Right: averagenumber.

An alternativ e method of �nding covers is to create a
new Booleanformula G whosesolutions correspond go
the covers of F . It turned out to be extremely hard
to solve G to �nd any non-trivial cover using state-of-
the-art SAT solvers for number of variables as low as
150. So we con�ned our experiments to small formu-
las, with 50, 70 and 90 variables. We found all covers
for such formulas with varying clause-to-variable ra-
tios � . The results are shown in Figure 2, where each
data point corresponds to statistics obtained from 500
formulas. The left pane shows the probabilit y that a
random formula, for a given clause-to-variable ratio,
hasat least onenon-trivial cover (either true or false).
The �gure shows a nice phase transition where cov-
ers appear, at around � = 2:5, which is surprisingly
sharp given the small formula sizes. Also, the region
where covers surely exist is widening on both sides
as the number of variables increases,supporting the
claim that non-trivial covers exist even in large for-
mulas. The right pane of Figure 2 shows the actual
number of non-trivial covers, with a clear trend that
the number increaseswith the sizeof the formula, for
all values of the clause-to-variable ratio. It is worth
noting that the number of covers is very small com-
pared to the number of satisfying assignments; e.g.
for 90 variables and � = 4:2, the expected number of
satisfying assignments is 150; 000,while there are only
8 covers on average. Somewhatsurprisingly, the num-
ber of falsecovers is almost negligible, around 2 at the
peak, and doesnot seemto be growing nearly as fast
as the total number of covers. This might explain why
SP, although approximating marginals over all covers,
is successfulin �nding satisfying assignments.

Wealsoconsiderhow the number of solutions that lead
to non-trivial covers changes for larger formulas, as
the number of variablesN increasesfrom 200 to 4000.
The left pane of Figure 3 shows that an estimate of
this number, in fact, grows exponentially with N . For
each N , the estimate is obtained by averaging over
200 formulas at ratio 4.2 the following quantit y: the
fraction p(N) of 20,000sampledsolutions that lead to
a non-trivial cover, scaledup by the expected number

of solutions for N -variable formulasat this ratio, which
is (2 � (7=8)4:2)N � 1:1414N .3 The resulting number,
p(N) � 1:1414N , is plotted on the y-axis of the left
pane,with N on the x-axis. The right paneof Figure 3
shows the data used to estimate p(N) along with its
�t on the y-axis, with N on the x-axis again.

200 500 1000 2000

1e
+

12
1e

+
56

1e
+

14
4

Number of Vars. (log scale)

E
[#

so
ls

 w
/ n

on
tr

. c
ov

er
]

(lo
g

sc
al

e)

1000 2000 3000 4000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Number of Variables

P
[n

on
 tr

iv
ia

l c
ov

er
]

Figure 3: Left: Expected number of solutions leading
to non-trivial covers(log-log scale). Right: Probabilit y
of a solution leading to a non-trivial cover.

Notice that the left pane is in log-scalefor both axes,
and clearly increases faster than a linear function.
Thus, the estimated number of solutions that lead to
non-trivial covers grows super-polynomially. In fact,
performing a best �t for this curve suggeststhat this
number grows exponentially , roughly as1:1407N . This
number is indeeda vanishingly small fraction of the ex-
pected number of solutions (1:1414N) as observed by
Maneva et al. (2005), but nonethelessexponentially
increasing. The existenceof covers for random 3-SAT
also aligns with what Achlioptas and Ricci-Tersenghi
(2006) recently proved for k-SAT with k � 9.

4.2 SP, BP , AND MAR GINALS

We now study the behavior of SP and BP on a ran-
dom formula in relation to solutions and covers of
that formula. While theoretical work has shown that
SP, viewed as BP on a related combinatorial problem,
provably computescover marginals on tree-structured
formulas, we demonstrate that even on random 3-SAT
instances, which are far from tree-like, SP approxi-
matescover marginals surprisingly well. We alsoshow
that cover marginals, especially in the extreme range,
are closely related to solution marginals in an intrigu-
ing \conservative" fashion. The combination of these
two e�ects, we believe, plays a crucial role in the suc-
cessof SP. Our experiments also reveal that BP per-
forms poorly at computing any marginals of interest.

Given marginal probabilities, we de�ne the magneti-
zation of a variable to be the di�erence between the

3 The version of the paper published in UAI-07 incor-
rectly stated, as pointed out by Lenka Zdeborova, that the
number of solutions of such formulas is known to be highly
concentrated around its expectation.

marginals of the variable being positive and it being
negative. For the rest of our experiments, we start
with a random 3-SAT formula F with 5000 variables
and 21000clauses(clause-to-variable ratio of 4.2), and
plot the magnetization of the variables of F in the
range [� 1; +1]. 4 The marginals for magnetization are
obtained from four di�eren t sources,which are com-
pared and contrasted against each other: (1) by run-
ning SP on F till the iterations converge; (2) by run-
ning BP on F but terminating it after 10,000 itera-
tions becausethe equations do not converge; (3) by
sampling solutions of F using SampleSat and comput-
ing an estimate of the positive and negative marginals
from the sampled solutions (the solution marginals);
and (4) by sampling solutions of F using SampleSat,
� -propagating them to covers, and computing an esti-
mate of the positive and negative marginals from these
covers (the cover marginals). Note that in (4), we are
sampling true covers and obtaining an estimate. An
alternativ e approach is to useSP itself on F to try to
samplecoversof F , but the issuehereis that the prob-
lem of �nding (non-trivial) covers is not self-reducible
to the decision problem of whether covers exist, as
shown in Section 2. Therefore, it is not clear whether
SP can be usedto actually �nd a cover, despite it ap-
proximating the cover marginals very well.

Recall that the SP-baseddecimation processworks by
identifying variables with extreme magnetization, �x-
ing them, and iterating. We will therefore be inter-
ested mostly in what happens in the extreme magne-
tization regions in these plots, namely, the lower left
corner (� 1; � 1) and the upper right corner (+1 ; +1).

In the left pane of Figure 4 we plot the magnetization
computed by SP on the x-axis and the magnetization
obtained from cover marginalson the y-axis. The scat-
ter plot has exactly 5000 data points, with one point
for each variable of the formula F . If the magneti-
zations on the two axes matched perfectly, all points
would fall on a single diagonal line from the bottom-
left corner to the top-right corner. The plot shows that
SP is highly accurate at computing cover marginals, es-
pecially in the extreme regions at the bottom-left and
top-right.

The middle pane of Figure 4 comparesthe magneti-
zation basedon cover marginals with the magnetiza-
tion basedon solutions marginals. This will provide
an intuition for why it might be better to follow cover
marginals rather than solution marginalswhen looking
for a satisfying assignment. 5 We seean interesting \s-

4 For clarit y, the plots show magnetizations for onesuch
formula, although the trend is generic.

5 Of course, if solution marginals could be computed
perfectly, this would not be an issue. In practice, how-
ever, the best we can hope is to approximately estimate

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

SP Magnetization

C
ov

er
 M

ag
ne

tiz
at

io
n

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

Cover Magnetization

S
ol

ut
io

n
M

ag
ne

tiz
at

io
n

-1.0 -0.5 0.0 0.5 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

BP Magnetization

S
ol

ut
io

n
M

ag
ne

tiz
at

io
n

Figure 4: Magnetization plots. Left: SP vs. covers. Middle: covers vs. solutions. Right: BP vs. solutions.

shape" in this plot, which canbeinterpreted asfollows:
�xing variables with extreme cover magnetizations is
more conservative compared to �xing variables with
extreme solution magnetizations. Which means that
variables that are extreme w.r.t. cover-basedmagne-
tization are also extreme w.r.t. solution-basedmagne-
tization (but not necessarilyvice-versa). Recall that
the extreme region is exactly where decimation-based
algorithms, that often �x a small set of extreme vari-
ablesper iteration, needto be correct. Thus, etimates
of cover marginals provide a safer heuristic for �xing
variables than estimatesof solution marginals.

As a comparison with BP, the right pane of Figure 4
shows BP magnetization vs. magnetization based on
solution marginals for the same5000 variable, 21000
clause formula. Since BP almost never convergeson
such formulas, we terminated BP after 10,000 itera-
tions (SP took roughly 50 iterations to converge) and
usedthe partially convergedmarginals obtained so far
for computing magnetization. The plot shows that BP
provides very poor estimates for the magnetizations
basedon solution marginals. (The points are equally
scattered when BP magnetization is plotted against
cover magnetization.) In fact, BP appears to identify
as extreme many variables that have the opposite so-
lution magnetization. Thus, when magnetization ob-
tained from BP is used as a heuristic for identifying
variables to �x, mistakesare often made that eventu-
ally lead to a contradiction, i.e. unsatis�able reduced
formula.

5 DISCUSSION

A comparisonbetweenleft and right panesof Figure 4
suggeststhat approximating statistics over covers (as
done by SP) is much more accurate than approximat-
ing statistics over solutions (as done by BP). This
appears to be becausecovers are much more coarse

marginals.

grained than solutions; indeed, even an exponentially
large cluster of solutions will have only a single cover
as its representativ e. This cover still captures critical
propertiesof the cluster necessaryfor �nding solutions,
such as backbone variables, which is what SP appears
to exploit.

We also saw that the extreme magnetization basedon
cover marginals is more conservative than that based
on solution marginals (as seen in the \s-shape" of
the plot in the middle pane of Figure 4). This sug-
gests that while SP, based on approximating cover
marginals, may misssomevariableswith extrememag-
netization, when it does �nd a variable to have ex-
treme magnetization, it is quite likely to be correct.
This provides an intuitiv e explanation of why the dec-
imation processbased on extreme SP magnetization
succeedswith high probabilit y on random 3-SAT prob-
lems without having to backtrack, while the decima-
tion processbasedon BP magnetizations more often
fails to �nd a satisfying assignment in practice.

Wealsonote that BP and SPhavebeenprovento com-
pute exact marginals on solutions and covers, respec-
tiv ely, only for tree-structured formulas (with some
simple exceptionalcaseslike formulas with a singlecy-
cle). For BP, solution marginals on tree formulas are
already non-trivial, and it is reasonableto expect it to
compute a fair approximation of marginals on loopy
networks (formulas). However, for SP, cover marginals
on tree formulas are trivial: the only cover here is the
all-� cover. Cover marginals becomeinteresting only
when one goes to loopy formulas, such as random 3-
SAT. In this case,as seenin our experiments, it is re-
markable that the SP computesa good approximation
of non-trivial cover marginals for non-tree formulas.

We hope that our results have convincingly demon-
strated that the study of the coversof formulas is very
fruitful and may well lead to a correct explanation of
the successof SP.

References
D. Achlioptas and F. Ricci-Tersenghi. On the solution-

spacegeometry of random constraint satisfaction prob-
lems. In 38th STOC, pages130{139, Seattle, WA, 2006.

A. Braunstein and R. Zecchina. Survey propagation as lo-
cal equilibrium equations. J. Stat. Mech., P06007,2004.
URL http://lanl.arXiv.org/cond- mat/0312483.

A. Braunstein, M. Mezard, and R. Zecchina. Survey prop-
agation: an algorithm for satis�abilit y. Random Struc-
tures and Algorithms, 27:201, 2005.

F. R. Kschischang, B. J. Frey, and H. A. Loeliger. Fac-
tor graphs and the sum-product algorithm. Information
Theory, IEEE Transactions on, 47(2):498{519, 2001.

E. N. Maneva, E. Mossel, and M. J. Wainwright. A new
look at survey propagation and its generalizations. In
16th SODA, pages1089{1098,Vancouver, Canada, 2005.

M. Mezard, G. Parisi, and R. Zecchina. Analytic and Al-
gorithmic Solution of Random Satis�abilit y Problems.
Science, 297(5582):812{815,2002. doi: 10.1126/science.
1073287.

E. Mossel. Personal communication, April 2007.

K. Murph y, Y. Weiss, and M. Jordan. Loopy belief prop-
agation for approximate inference: An empirical study.
In 15th UAI , pages467{475, Sweden, July 1999.

R. E. Neapolitan. Learning Bayesian Networks. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 2004. ISBN
0130125342.

J. Pearl. Probabilistic Reasoning in Intel ligent Systems:
Networks of Plausible Inference. Morgan Kauf., 1988.

R Development Core Team. R: A language and envi-
ronment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria, 2005. URL
http://www.R- project.org . ISBN 3-900051-07-0.

W. Wei, J. Erenrich, and B. Selman. Towards e�cien t
sampling: Exploiting random walk strategies. In 19th
AAAI , pages670{676, San Jose, CA, July 2004.

APPENDIX: DERIV ATION OF THE
SP EQUA TIONS

Section3 shows how to formulate a constraint satisfac-
tion problem P(F) such that its solutions are exactly
the covers of a formula F . Here we proceedto show
how the belief propagation formalism applied to P(F)
(as described in Section3.1) results in the survey prop-
agation equations.

Review of BP . We assume familiarit y with the
general form of BP equations, as used for example
by Neapolitan (2004) in Theorem 3.2. In short, BP
uses messagesto communicate information between
nodes of the factor graph (between variable nodes
xa ; : : : and function nodes Fx ; Fa ; : : :). Each message
is a function of one argument, which takes on the
samevaluesasthe variable node end-point of the mes-
sage. There are two kinds of messages:from vari-
able nodes to function nodes (denoted by � x ! F (:)),
and from function nodes to variable nodes (denoted
by � F ! x (:)). In a two-level Bayesian Network, �

messagesare computed by (piecewise)multiplying to-
gether the � messagesreceived on all other links.
The � messagesare more complicated: they are sums
acrossall possibleworlds (values for arguments of re-
ceived � messages)of products of all-but-one � mes-
sageswith the chosenarguments. In caseof a deter-
ministic system (which is our case: every world has
probabilit y of either 1 or 0), this is equivalent to sum
of products of � messageswith arguments that are
compatible with each other as judged by the corre-
sponding function node, Fx or Fa . Moreover, if a vari-
able node only has two neighboring function nodes,
then it merely passesreceived � messagesfrom one
neighbor to the other. Since all variable nodes in
P(F) have degreetwo, we can safely ignore the ex-
istence of � messagesand only focus on � messages.
Thus, every Fx node receivesmessagesfrom Fa nodes
(which we will denote by � a! x) and and every Fa

node receives messagesfrom Fx nodes (denoted by
� x ! a), both of which are functions of one argument,
(r a! x ; wx ! a) 2 f (0; 0); (0; 1); (1; 0)g. The BP equa-
tions are constructed by considering the set of com-
patible variable node valuesgiven the one �xed value
in the argument.

Let C(x) be the set of all clausescontaining variable
x, and V(a) the set of all variablesappearing in clause
a. Further, let Cs

a (x) be the set of all clausesother
than a where x occurs with the same sign as in a.
Similarly de�ne Cu

a (x) to be the set of clauseswhere
x occurs with the opposite sign as in a. Note that
Cs

a (x) [Cu
a (x) [f ag = C(x).

Equations for Fx . The equationsfor messagessent
from a factor node Fx are given in Figure 5. For the
argument value of (1; 0) the set of compatible values,
as judged by Fx when xa = (1; 0), is one where there
can be requestsfrom clauseswherex appearswith the
samesign as in a (and no warnings sent to them), but
there must be no requestsfrom opposite clauses(and
warning must be sent). Similarly for (0; 1), but here
the roles of Cs

a (x) and Cu
a (x) are exchanged,plus the

fact that x sendsa warning to a meansthat it must be
receivinga requestfrom someoppositeclause(which is
accounted for by the \ � " term). Finally, for the value
(0; 0), there are two possibilities: either at least one
request is received from Cs

a (x) (the �rst term in the
sum, analogousto the expressionfor (0; 1)), or there
are no requestsat all (the secondterm in the sum).

Equations for Fa . Figure 6 shows equations for
messagessent from a factor node Fa . The argument
value of (1; 0) is the easiest: a sendsout a request if
and only if all other variablessendit a warning, sothat
the only compatible values are all (0; 1). The caseof
(0; 0) is the complement: a cannot receive a warning

� x ! a (1; 0) =
Y

b2 C s
a (x)

(� b! x (0; 0) + � b! x (1; 0))
Y

b2 C u
a (x)

� b! x (0; 1)

� x ! a (0; 1) =
Y

b2 C s
a (x)

� b! x (0; 1)

2

4
Y

b2 C u
a (x)

(� b! x (0; 0) + � b! x (1; 0)) �
Y

b2 C u
a (x)

� b! x (0; 0)

3

5

� x ! a (0; 0) =

2

4
Y

b2 C s
a (x)

(� b! x (0; 0) + � b! x (1; 0)) �
Y

b2 C s
a (x)

� b! x (0; 0)

3

5
Y

b2 C u
a (x)

� b! x (0; 1) +
Y

b2 C (x) na

� b! x (0; 0)

Figure 5: BP equations for Fx

� a! x (1; 0) =
Y

y 2 V (a) nx

� y ! a (0; 1)

� a! x (0; 0) =
Y

y 2 V (a) nx

(� y ! a (0; 0) + � y ! a (0; 1)) �
Y

y 2 V (a) nx

� y ! a (0; 1)

� a! x (0; 1) =
Y

y 2 V (a) nx

(� y ! a (0; 0) + � y ! a (0; 1)) �
Y

y 2 V (a) nx

� y ! a (0; 1)

+
X

y 2 V (a) nx

(� y ! a (1; 0) � � y ! a (0; 0))
Y

y 02 V (a) nf x;y g

� y 0! a (0; 1)

Figure 6: BP equations for Fa

from all other variables, and since x does not send a
warning, a doesnot senda requestanywhere. The last
case,(0; 1), is a little more complicated. The �rst part
is the sameas before, but there needsto be a correc-
tion term to account for two extra possibilities: �rst
it is now possible that a issuesa request to some y
if all other variables also senda warning (the positive
term in the sum), and secondit is not possible that
all-but-one variable send a a warning and yet a does
not issuea request to the last one (the negative term
in the sum).

Deriving the SP equations. The expression
for � a! x (0; 1) can be simpli�ed by assuming that
� y! a(1; 0) = � y! a(0; 0) for all y, in which case it
reduces to the expression for � a! x (0; 0). This as-
sumption is crucial, but not very restrictiv e. Notice
that it then follows that � x ! a(1; 0) = � x ! a(0; 0) (by
inspecting the appropriate expressionsin Figure 5),
and therefore the assumptionkeepsholding when iter-
atively solving the BP equations,provided it was true
at the beginning.

The last step in the derivation is to rename and nor-
malize the terms appropriately soasto \recognize" the
SP equations in Figures 5 and 6. Let us de�ne

� a! x
4
=

Y

y 2 V (a) nx

� y ! a (0; 1)
� y ! a (0; 0) + � y ! a (0; 1)

and

� u
x ! a

4
= � x ! a (0; 1)

� 0
x ! a

4
=

Y

b2 C (x) na

� b! x (0; 0)

� s
x ! a

4
= � x ! a (0; 0) � � 0

x ! a

Notice that � a! x is just a rescaled� a! x (1; 0), and
that the scaling factor � y! a(0; 0) + � y! a(0; 1) equals
� u

y! a + � s
y! a + � 0

y! a . Rescaling � a! x (0; 0) and
� a! x (0; 1) in the sameway (and using the assumption
that they are equal) yields � a! x (0; 0) = � a! x (0; 1) =
1 � � a! x . Finally, writing down the BP equations for
� x ! a(0; 1) and � x ! a(0; 0) in terms of thesenew vari-
ables results in the familiar SP equations established
in Braunstein et al. (2005):

� a! x =
Y

y 2 V (a) nx

� u
y ! a

� u
y ! a + � s

y ! a + � 0
y ! a

� u
x ! a =

Y

b2 C s
a (x)

(1 � � b! x)

2

41 �
Y

b2 C u
a (x)

(1 � � b! x)

3

5

� s
x ! a =

Y

b2 C u
a (x)

(1 � � b! x)

2

41 �
Y

b2 C s
a (x)

(1 � � b! x)

3

5

� 0
x ! a =

Y

b2 C (x) na

(1 � � b! x)

In addition, the expressionsfor marginal probabilities
computed by BP from a �xed point of the above equa-
tions can be shown, in a similar way, to be equivalent
to the SP \bias" expressions.

	INTRODUCTION
	COVERS OF CNF FORMULAS
	PROBLEM REFORMULATION: FROM SOLUTIONS TO COVERS
	INFERENCE OVER COVERS

	EXPERIMENTAL RESULTS
	EXISTENCE OF COVERS
	SP, BP, AND MARGINALS

