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Abstract

Survey propagation (SP) is an exciting new
technique that has beenremarkably success-
ful at solving very large hard combinatorial

problems, such as determining the satis a-

bility of Boolean formulas. In a promising

attempt at understanding the successof SP,

it wasrecertly shown that SP can be viewed

as a form of belief propagation, computing

marginal probabilities over certain objects

called covers of a formula. This explana-

tion was, however, shortly dismissedby ex-

periments suggestingthat non-trivial covers
simply do not exist for large formulas. In

this paper, we shawv that these experimernts

were misleading: not only do covers exist for

large hard random formulas, SP is surpris-

ingly accurate at computing marginals over

these covers despite the existence of many

cyclesin the formulas. This re-opensa po-

tentially simpler line of reasoningfor under-

standing SP, in cortrast to somealternative

lines of explanation that have beenproposed
assumingcovers do not exist.

1 INTR ODUCTION

Survey Propagation (SP) is a new exciting algorithm
for solving hard combinatorial problems. It was dis-
covered by Mezard, Parisi, and Zecdina (2002, and
is sofar the only known method successfulat solving
random Boolean satis abilit y (SAT) problems with 1
million variablesand beyond in near-lineartime in the
hardestregion. The SP method is quite radical in that
it tries to approximate certain marginal probabilities
related to the set of satisfying assignmems. It then
iterativ ely assignsvalues to variables with the most
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extreme probabilities. In e ect, the algorithm be-
haveslik e the usual badktrack seart methods for SAT
(DPLL-based), which alsoassignvariable valuesincre-
mentally in an attempt to nd a satisfying assignmen.
Howewer, quite surprisingly, SP almost never has to
badctrack. In other words, the \heuristic guidance"
from SP is almost always correct. Note that, interest-
ingly, computing marginals on satisfying assignmers
is actually believed to be much harder than nding
a single satisfying assignmen (#P-complete vs. NP-
complete). Nonetheless,SP is able to e cien tly ap-
proximate certain marginals and usesthis information
to successfully nd a satisfying assignmei.

SP wasderived from rather complex statistical physics
methods, speci cally, the so-calledcavity method de-
velopedfor the study of spin glasses.Closeconnections
to belief propagation (BP) methods were subsequetly

discovered. In particular, it was discovered by Braun-
stein and Zecdina (2004 (later extendedby Maneva,
Mossel,and Wainwright (2005) that SP equationsare
equivalent to BP equations for obtaining marginals
over a special class of combinatorial objects, called
covers. Intuitiv ely, a cover provides a represenativ e
generalization of a cluster of satisfying assignmets.

The discovery of a close connection between SP and
BP via the use of covers laid an exciting foundation

for explaining the succesf SP. Unfortunately, subse-
guern experimental evidencesuggestedthat hard ran-
dom 3-SAT formulas have, with high probability, only
one (trivial) cover (Maneva et al., 2005. This would
leave all variablese ectiv ely in an undecidedstate, and
would mean that marginals on covers cannot provide
any useful information on how to set variables. Since
SP clearly sets variables in a non-trivial manner, it

was conjectured that there must be another explana-
tion for the good behavior of SP; in particular, one
that is not basedon the use of marginal probabilities

of variablesin the covers.

In this paper, we revisit the claim that hard random 3-
SAT formulas do not have interesting non-trivial cov-



ers. In fact, we show that such formulas have large
numbers of non-trivial covers. The main cortribution

of the paper is the rst clear empirical evidenceshow-
ing that in random 3-SAT problems near the satis -

ability and hardnessthreshold, (1) a signi cant num-
ber of non-trivial covers exist; (2) SP is remarkably
good at computing variable marginals basedon cov-
ers; and (3) these cover marginals closelyrelate to so-
lution marginals at least in the extreme values,where
it matters the most for survey inspired decimation. As
a consequencewe strongly suspect that explaining SP
in terms of covers may be the correct path after all.

Note that (2) above is quite surprising for random
3-SAT formulas becausesuc formulas have many
loops. The known formal proof that SP computes
cover marginals only appliesto tree-structured formu-
las, which in fact have only a single (trivial) cover.
Further, it's amazing that while SP computes such
marginalsin afraction of a second,the next bestmeth-
ods of computing thesemarginals that we know of (via
exact enumeration, or sampling followed by \p eeling™)
require over 100 CPU hours.

Our experimerts also indicate that cover marginals
are more \conservative" than solution marginalsin the
sensethat variables that are extreme with respect to
cover marginals are almost certainly alsoextreme with
respect to solution marginals, but not vice versa. This
shedslight on why it is safeto set variables with ex-
treme cover marginals in an iterative manner, as is
donein the survey inspired decimation processfor nd-
ing a solution using the marginals computed by SP.

In addition to these empirical results, we also revisit
the derivation of the SP equationsthemselwes,with the
goal of presering the derivation in an insightful form
purely within the realm of combinatorial constraint
satisfaction problems (CSPs). We describe how one
can reformulate in a natural step-by-step manner the
problem of nding a satisfying assignmen into one of
nding a cover, by considering related factor graphs
on larger state spaces. The BP equations for this re-
formulated problem are exactly the SP equations for
the original problem, as shavn in the Appendix.

2 COVERS OF CNF FORMULAS

We start by introducing the notation and the ba-
sic conceptsthat we use throughout the paper. We
are concernedwith Boolean formulas in Conjunctive
Normal Form or CNF, that is, formulas of the form
Fooll_ i)™ (om0 _ Ik, ), Where
ead li (called a literal) is a Boolean variable x; or
its negation : x;. Eacdh conjunct of F, which itself is
a disjunction of literals, is called a clause In 3-CNF
or 3-SAT formulas, ewvery clause has 3 literals. Ran-

dom 3-SAT formulas over n variables are generatedby
uniformly randomly choosing a pre-speci ed number
of clausesover these n variables. The Boolean satis-
abilit y problem is the following: Given a CNF for-
mula F over n variables, nd atruth assignmemn for
the variables such that every clausein F ewaluatesto
tr ue; is called a satisfying assignmentor a solution
of F. Weidentify tr ue with 1 and false with O.

A truth assignmem to n variables can be viewed as a
string of length n over the alphabet f 0; 1g, and extend-
ing this alphabet to include a third letter \ " leadsto
a genenlized assignment A variable with the value
can be interpreted as being \undecided," while vari-
ableswith values O or 1 can be interpreted as being
\decided" on what they want to be. We will be inter-
estedin certain generalizedassignmeits called covers
Our formal de nition of coversfollows the onegiven by
Achlioptas and Ricci-Tersenghi(2006. Let variable x
be called a supported variable under a generalizedas-
signmert  if there is a clause C sudch that x is the
only variable that satis es C and all other literals of
C arefalse . Otherwise, x is called unsupported.

De nition 1. A generalizedassignmen 2 f0;1; g"
is a cover of a CNF formula F i

1. every clauseof F hasat least onesatisfying literal
or at least two literals with value under , and
2. hasno unsupported variables assignedO or 1.

The rst condition ensuresthat ead clauseof F is
either already satis ed by or hasenoughundecided
variables to not causeany undecided variable to be
forced to decide on a value (no \unit propagation”).
The secondcondition says that ead variable that is
assignedO or 1 is set that way for a reason: there
exists a clausethat relies on this setting in order to
be satis ed. For example, consider the formula F

X_:y_ 2" x_y_:2"(GXx_:y_2). F has
exactly two covers: 111 and . This can be veri ed
by observing that whenewer some variable is 0 or ,
then all non- variables are unsupported. Notice that
the string of all 's always satis es the conditions in
De nition 1; we referto this string asthe trivial cover.

Covers were introduced by Maneva et al. (2005 as
a useful concept to analyze the behavior of SP, but
their combinatorial properties are much less known
than those of solutions. A cover can be thought of as
a partial assignmentto variables, where the variables
assigned are consideredunspeci ed. In this sense,
ead cover is a representativ e of a potentially large set
of completetruth assignmers, satisfying aswell asnot
satisfying. This motivates further di eren tiation:

Denition 2. A cover 2 f0;1;, g" of F is a true
cover i there exists a satisfying assignmen 2
f0;1g" of F suchthat and agreeonall valueswhere



isnota ,ie.,8 2fl:::;;ng( 6 =) i)
Otherwise, is afalse cover.

A true cover thus generalizesat least one satisfying
assignmem. True coversare interesting to study when
trying to satisfy a formula, becauseif there exists a
true cover with variable x assignedO or 1, then there
must also exist a satisfying assignmen with the same
setting of x.

One can construct a true cover 2 f0;1; g" of F by
starting with any satisfying assignmen 2 f0; 19" of
F and generalizingit using a simple procedure called
-propagation .>! The procedure starts by initially
setting = . It then repeatedly choosesan arbitrary
variable unsupported under and turns it into a ,
until there are no more unsupported variables. The re-
sulting string  is atrue cover, which canbeveri ed as
follows. The satisfying assignmen  already satis es
the rst condition in De nition 1, and -propagation
does not destroy this property. In particular, a vari-
able on which someclausereliesis never turned into a
. The secondcondition in De nition 1 is also clearly
satis ed when -propagation halts, sothat must be
a cover. Moreover, since generalizes , it is a true
cover. Note that -propagation can, in principle, be
applied to an arbitrary generalizedassignmemn. How-
ever, unlesswe start with one that satis es the rst
condition in the cover de nition, -propagation may
not lead to a cover.

We end with a discussionof two insightful properties
of covers. The rst relates to \self-reducibilit y" and
the secondto covers for tree-structured formulas.

No self-reducibilit y. Considerthe relation between
the decisionand seart versionsof the problem of nd-

ing a solution of a CNF formula F. In the decisionver-
sion, one needsan algorithm that determineswhether
or not F has a solution, while in the seard version,
one needsan algorithm that explicity nds a solu-
tion. The problem of nding a solution for F is self-
reducible, i.e., given an oracle for the decisionversion,
one can e cien tly solve the seart version by itera-
tively xing variablesto 1 or 0, testing whether there
is still a solution, and cortinuing in this way. Some-
what surprisingly, this strategy doesnot work for the
problem of nding a cover. In other words, an oracle
for the decision version of this problem does not im-
mediately provide an e cien t algorithm for nding a
cover. (The lack of self-reducibility makesit very hard
to nd covers as we will seebelow.) As a concrete
example, considerthe formula F described right after
De nition 1. To construct a cover of F, we could ask

1This wasintro duced under di eren t namesasthe peel-
ing procedure or coarsening, e.g., by Maneva et al. (2005).

whether there exists a cover with x set to 1. Since
111is a cover (yet unknown to us), the decisionoracle
would say yes. We could then x x to 1, simplify the
formulato (y_: z)" (: y” z), and askwhether there is
a cover with y setto 0. This residual formula indeed
has 00 as a cover, and the oracle would say yes. With

one more query, we will end up with 100 asthe values
of x; y; z, which is in fact not a cover of F.

Tree-structured form ulas. For tree-structured

formulas without unit clauses,.e., formulas whosefac-
tor graph doesnot have a cycle, the only cover is the
trivial all- cover. We argue this using the connec-
tion betweencoversand SP showvn by Braunstein and
Zecdina (2004, which says that when generalizedas-
sighmeris have a uniform prior, SPon atree formula F

provably computes probability marginals of variables
being 0, 1, and in covers of F. Moreover, it can be
veried from the iterativ e equations for SP that with

no unit clauses,zero marginals for any variable being
0 or 1, and full marginals for any variable beinga is
a xed point of SP. Since SP provably has exactly one
xed point on tree formulas, it follows that the only
cover of such formulas is the trivial all- cover.

3 PROBLEM REF ORMULA TION:
FROM SOLUTIONS TO COVERS

We now show that the conceptof covers can be quite
naturally arrived at when trying to nd solutions of
a CNF formula, thus motivating the study of covers
from a purely generative perspective. Starting with
a CNF formula F, we describe how F is transformed
step-by-step into the problem of nding covers of F,
motivating ead step.

Although our discussionapplies to any CNF formula
F, wewill be using the following exampleformula with
3 variables and 4 clausesto illustrate the steps:

S S L

c d

Let N denotethe number of variables, M the number
of clauses,and L the number of literals of F.

Original  problem. TheNprobIem isto nd an as-
signmert in the spacef 0; 1g~ that satis es F. The fac-
tor graph for F hasN variable nodesand M function
nodes, corresponding directly to the variablesx;y;:::
and clausesa;b;::: in F (seee.g. Kschischang et al.
(2001). The factor graph for the example formula
is depicted below. Here factors Fy;Fy;::: represen
predicatesensuring that the corresponding clausehas
at least one satisfying literal.
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Variable occurrences. The rst stepin the trans-
formation is to start treating every variable occurrenae
Xa;Xp;Ya;Yb;:::in F asa separateunit that canbe ei-
ther 0 or 1. This allows for more exibilit y in the pro-
cessof nding a solution, since a variable can decide
what value to assumein ead clause separately Of
course,we needto add constraints to ensurethat the
occurrencevaluesare ewventually consistert: for every
variable x in F, we add a constraint Fy that all occur-
rencesof X have the samevalue. Now the seard space
isf0; 1g-, and the corresponding factor graph cortains
L variable nodesand M + N function nodes(the orig-
inal clausefactors F4; Fp;::: and the new constraints
Fx;Fy;:io).

Xa Xp Xd Ya Yb Ye Za Zc Z4

F Fa Fp Fy Fe  Fq F,

At this point, we have not relaxed solutions to the

original problem F: solutions to the modi ed problem

correspond preciselyto the original solutions, because
variable occurrencesare forced to be consistert. How-

ever, we moved this consistencyched from the syn-

tactic level (variablescould not be inconsistert simply

by the problem de nition) to the semariic level (we

have special constraints to guararntee consistency).

Relaxing assignments. The next step is to relax
the problem by allowing variable nodesto assumethe
special value\ ". The semarics of is \undecided,"”
meaning that the variable node is set neither to 0
nor to 1. The new seart spaceis f0;1; g L and we
must specify how our constraints handle the value

Variable constraints Fy;::: have the samemeaning as
before, namely, all variable nodes x,; Xp;::: have the
same value for ewvery variable x. Clause constraints
Fa;::: now have a modi ed meaning: a clauseis sat-
is ed if it contains at least one satisfying literal or at
leasttwo literals with the value . The motivation here
is to either satisfy a clauseor leave enough\freedom"
in the form of at least two undecided variables. (A
single undecidedvariable would be forced to take on a
particular value if all other literals in the clausewere
falsied.) With this transformation, the factor graph
remainsstructurally the same,while the setof possible

valuesfor variable nodeschanges.

The solutions to this modi ed problem do not neces-
sarily correspond directly to solutions of the original
one. In particular, if there are no unit clausesand all
variables are setto , the problem is already \solved"
without providing any useful information.

Reducing freedom of choice. To distinguish vari-
ablesthat could assumethe value from those that
truly needto be xed to either O or 1, we require that
every non- variable has a clausethat needsthe vari-
ableto be 0 or 1 in order to be satis ed. The searh
spacedoesnot change,but we needto add constraints
to implement the reduction in the freedom of choice.

Notice that this requiremert is equivalent to \no un-
supported variables" in the de nition of a cover, and
that the rst requiremert in that de nition is ful-
lled by the clauseconstraints. Therefore, we are now
searding for covers of F. A natural way to represen
the \no unsupported variable" constraint in the fac-
tor graph is to add for ead variable x a new function
node F?, connectedto the variable nodesfor x aswell
asfor all other variables sharing a clausewith x. This,
of course, createsmany new links and intro ducesad-
ditional short cycles,even if the original factor graph
was acyclic. The following transformation step allevi-
ates this issue.

Rein terpreting variable nodes. Asthe nal step,
we change the semarics of the variable nodes' val-
ues and of the constraints so that the \no unsup-
ported variable" condition canbe enforcedwithout ad-
ditional function nodes. The reasoningis that the sim-
ple f0;1; g domain createsa bottleneck for how much
information can be communicated between nodes in
the factor graph. By altering the semarics of the
variable nodes' values, we can improve on this.

The new value of a variable node x, will be a pair
(rar x;Wy1 a) 2 f(0;0);(0;1);(1;0)g, sothat the size
of the seart spaceis still 3-. We interpret the value
ra x asareguestfrom clausea to variable x with the
meaning that a relieson x to satisfy it, and the value
Wy 5 asawarning from variable x to clausea that x is
setsud that it doesnot satisfy a. The values1 and 0
indicate presenceand absenceresp., of the requestor
warning. We can recover the original f0;1; g values
from thesenew valuesasfollows: if ra x = 1 for some
a, then x is setto satisfy clausea; if there is no request
from any clausewhere x appears,then x is undecided
(a value of in the previousinterpretation). The vari-
able constraints Fy;::: not only ensureconsistencyof
the values of X,;Xp;::: as before, but also ensurethe
secondcover condition asdescribed below. The clause
constraints F4;::: remain unchanged.



The variable constraint Fy is a predicate ensuringthat
the following two conditions are met:

1. if ray x = 1 for any clause a where x appears,
then wy, , = O for all clausesb where x appears
with the samesign asin a, and wy, , = 1 for all
b where x appearswith the opposite sign. Sincex
must be setto satisfy a, this ensuresthat clauses
that are unsatis ed by x do receivwe a warning.

2. if ra x = Ofor all clausesa wherex appears,then
Wy a = O for all of them, i.e., no clausereceiwes
a warning from x.

To evaluate Fy, values(ra x;Wx: a) are neededonly
for clausesa in which x appears, which is exactly the
set of variable nodesthe factor Fy is connectedto. No-
tice that the case(ra x;Wx: a) = (1;1) cannothappen
due to condition 1 above. The conditions also imply
that the variable occurrencesof x are consistent, andin
particular that two clauseswvherex appearswith oppo-
site signs(say a and b) cannot simultaneously request
to be satised by x. This is becauseeither ry x = 0
or rpp; x = 0 must hold due to condition 1.

The clause constraint F, is a predicate stating that
clausea issuesarequestto its variable x if and only if it
receiveswarningsfrom all its other variables: ry x = 1
i Wy o = 1for all variablesy 6 x in a. Again, Fa
canbe evaluated using exactly valuesfrom the variable
nodesit is connectedto.

When clause a issuesa request to variable x (i.e.,
ra x = 1), x must be setto satisfy a, thus providing a
satisfying literal for a. If a doesnot issueany request,
then according to the condition of F,, at least two of
a's variables, say x and y, must not have sert a warn-
ing. In this case,Fyx and F, state that ead of x and
y is either undecidedor satis es a. Thusthe rst con-
dition in the cover de nition holds in any solution of
this new constraint satisfaction problem. The second
condition also holds, becauseevery variable x that is
not undecidedmust have received a requestfrom some
clausea, sothat x is the only literal in a that is not
false . Therefore x is supported.

Let usdenotethis nal constraint satisfaction problem
by P(F). (It is a function of the original formula F.)
Notice that the factor graph of P(F) has the same
topology as the factor graph of F. In particular, if
F has a tree factor graph, sodoesP (F). Further, by
the construction of P (F) described above, its solutions
correspond preciselyto the coversof F.

3.1 INFERENCE OVER COVERS

This section discussesan approac for solving the
problem P (F) with probabilistic inferenceusing belief
propagation (BP). It arrivesat the survey propagation

equationsfor F by applying BP equationsto P (F).

Since the factor graph of P(F) can be easily viewed
as a BayesianNetwork (cf. Pearl, 1988, one can com-
pute marginal probabilities over the set of satisfying
assignmeits of the problem, de ned as

Pr[xa = v j all constraints of P(F) are satis ed]

for ead variable node x, and v 2 f (0; 0); (0; 1); (1; 0)g.
The probability spacehere is over all assignmers to
variable nodeswith uniform prior.

Once these solution marginals are known, we know
which variables are most likely to assumea particular
value, and setting these variables simpli es the prob-
lem. A new set of marginals can be computed on this
simplied formula, and the whole processrepeated.
This method of searding for a satisfying assignmen
is called the decimation pro cedure. The problem,
of course,is to compute the marginals (which, in gen-
eral, is much harder than nding a satisfying assign-
ment). One possibility for computing marginals is to
usethe belief propagation algorithm (cf. Pearl, 1988.
Although provably correct essetially only for formulas
with a tree factor graph, BP provides a good approxi-
mation of the true marginalsin many problem domains
in practice (Murphy et al., 1999. Moreover, asshownn
by Maneva et al. (2009, applying the BP algorithm to
the problem of searding for coversof F results in the
SP algorithm. Thus, on formulas with a tree factor
graph, the SP algorithm provably computes marginal
probabilities over covers of F, which are equivalert to
marginals over satisfying assignmers of P (F). When
the formula contains loops, SP computes a loopy ap-
proximation to the cover marginals. Speci ¢ details of
the derivation of SP equationsfrom the problem P (F)
are deferredto the Appendix.

4 EXPERIMENT AL RESUL TS

This section presents our main cortributions. We be-
gin by demonstrating that non-trivial covers do ex-
ist in large numbers in random 3-SAT formula, and
then explore connections between SP, BP, and vari-
able marginals computed from covers as well as so-
lutions, showing in particular that SP approximates
cover marginals surprisingly well.

4.1 EXISTENCE OF COVERS

Motiv ated by theoretical results connecting SP to cov-
ers of formulas, Maneva et al. (2005 suggestedan
experimertal study to test whether non-trivial covers
even exist in random 3-SAT formulas. They proposed
a seeminglygood way to do this (the \p eeling experi-
ment"), namely, start with a uniformly random satisfy-



ing assignmen of a formula F and, while it hasunsup-
ported variables, -propagate the assignmem. When
the processterminates, one obtains a (true) cover of
F. Unfortunately, what they obsenedis that this pro-
cessrepeatedly hits the trivial all- cover, from which
they concludedthat non-trivial covers most likely do
not exist for such formulas. Howewer, it is known that
near-uniformly sampling solutions of such formulas to
start with is a hard problem in itself and that most
sampling methods obtain solutions in a highly non-
uniform manner (Wei et al., 2004. Consequetly, one
must be careful in drawing conclusionsfrom relatively
few and possibly biased samples.

1000

-- Solutions leading to the trivial cover
—— Solutions leading to non-trivial covers

Number of unsupported variables
200 400 600 800
| | | |

0

7\‘ — T T T
0 1000 2000 3000 4000 5000
Number of stars

Figure 1: The peeling experimert, shawing the ewolu-
tion of the number of stars as -propagation proceeds.

To understand this issuebetter, we ran the samepeel-
ing experiment on a 5000 variable random 3-SAT for-
mula at clause-to-\ariable ratio 4.2 (which is closeto
the hardnessthreshold for random 3-SAT problems),
but used SampleSat (Wei et al., 2004 to obtain sam-
ples, which is expectedto produce fairly uniform sam-
ples. Figure 1 shaws the ewlution of the number of
unsupported variables at ead stageas -propagation
is performed starting from a solution. Here, the
x-axis shaws the number of stars, which monotoni-
cally increasesby -propagation. The y-axis showvs
the number of unsupported variables presen at eah
stage. As one moves from left to right following the

-propagation process,one hits a cover if the num-
ber of unsupported variables drops to zero (so that

-propagation terminates). The two curvesin the plot
correspond to solutions that -propagatedto the triv-

ial cover and those that did not. In our experimert,
out of 500 satisfying assignmeits used,nearly 74%led
to the trivial cover; their averageis represetted by the
top curve. The remaining 26% of the sampled solu-
tions actually led to non-trivial covers; their average
is represetted by the bottom curve. Thus, when so-
lutions are samplednear-uniformly, a substartial frac-
tion of them lead to non-trivial covers?

2 That this was not observed by Maneva et al. (2005
can be attributed to the fact that SP was used to nd
satisfying assignmerts (Mossel 2007), resulting in highly
non-uniform samples.
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Figure 2: Non-trivial coversin random formulas. Left:
existenceprobability. Right: averagenumber.

An alternative method of nding coversis to create a
new Booleanformula G whosesolutions correspond go
the covers of F. It turned out to be extremely hard
to solve G to nd any non-trivial cover using state-of-
the-art SAT solvers for number of variables as low as
150. Sowe con ned our experiments to small formu-
las, with 50, 70 and 90 variables. We found all covers
for such formulas with varying clause-to-\ariable ra-
tios . The results are shown in Figure 2, where eath
data point correspondsto statistics obtained from 500
formulas. The left pane shows the probability that a
random formula, for a given clause-to-\ariable ratio,
hasat least one non-trivial cover (either true or false).
The gure shows a nice phasetransition where cov-
ers appear, at around = 2:5, which is surprisingly
sharp given the small formula sizes. Also, the region
where covers surely exist is widening on both sides
as the number of variables increases,supporting the
claim that non-trivial covers exist even in large for-
mulas. The right pane of Figure 2 shows the actual
number of non-trivial covers, with a clear trend that
the number increaseswith the size of the formula, for
all values of the clause-to-wariable ratio. It is worth
noting that the number of covers is very small com-
pared to the number of satisfying assignmerts; e.g.
for 90 variablesand = 4:2, the expected number of
satisfying assignmerts is 150, 000, while there are only
8 coverson average. Somewhatsurprisingly, the num-
ber of falsecoversis almost negligible, around 2 at the
peak, and doesnot seemto be growing nearly as fast
asthe total number of covers. This might explain why
SP, although approximating marginals over all covers,
is successfuin nding satisfying assignmets.

We alsoconsiderhow the number of solutions that lead
to non-trivial covers changesfor larger formulas, as
the number of variablesN increasesirom 200to 4000.
The left pane of Figure 3 shows that an estimate of
this number, in fact, grows expnentially with N. For
eahh N, the estimate is obtained by averaging over
200 formulas at ratio 4.2 the following quartity: the
fraction p(N) of 20,000sampledsolutions that lead to
a non-trivial cover, scaledup by the expected number



of solutionsfor N -variable formulas at this ratio, which
is (2 (7=8)*?)N  1:1414 3 The resulting number,
p(N) 1:1414Y, is plotted on the y-axis of the left
pane,with N on the x-axis. The right paneof Figure 3
shaws the data usedto estimate p(N) along with its
t onthe y-axis, with N on the x-axis again.
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Figure 3: Left: Expected number of solutions leading
to non-trivial covers(log-log scale). Right: Probability
of a solution leading to a non-trivial cover.
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Notice that the left paneis in log-scalefor both axes,
and clearly increasesfaster than a linear function.
Thus, the estimated number of solutions that lead to
non-trivial covers grows super-polynomially. In fact,
performing a best t for this curve suggeststhat this
number grows exponertially , roughly as1:1407 . This
number is indeeda vanishingly small fraction of the ex-
pected number of solutions (1:1414") as obsened by
Maneva et al. (2009, but nonethelessexponertially
increasing. The existenceof covers for random 3-SAT
also aligns with what Achlioptas and Ricci-Tersenghi
(2009 recertly proved for k-SAT with k 9.

4.2 SP, BP, AND MAR GINALS

We now study the behavior of SP and BP on a ran-
dom formula in relation to solutions and covers of
that formula. While theoretical work has showvn that
SP, viewed as BP on a related combinatorial problem,
provably computescover marginals on tree-structured
formulas, we demonstratethat even on random 3-SAT
instances, which are far from tree-like, SP approxi-
mates cover marginals surprisingly well. We also show
that cover marginals, especially in the extreme range,
are closelyrelated to solution marginalsin an intrigu-
ing \conservative" fashion. The combination of these
two e ects, we kelieve, plays a crucial role in the suc-
cessof SP. Our experiments also reveal that BP per-
forms poorly at computing any marginals of interest.

Given marginal probabilities, we de ne the magneti-
zation of a variable to be the di erence betweenthe

% The version of the paper published in UAI-07 incor-
rectly stated, as pointed out by Lenka Zdeborova, that the
number of solutions of such formulas is known to be highly
concertrated around its expectation.

marginals of the variable being positive and it being
negative. For the rest of our experiments, we start
with a random 3-SAT formula F with 5000 variables
and 21000clauses(clause-to-\ariable ratio of 4.2), and
plot the magnetization of the variables of F in the
range[ 1;+1].* The marginals for magnetization are
obtained from four dierent sources,which are com-
pared and cortrasted against ead other: (1) by run-
ning SP on F till the iterations cornverge;(2) by run-
ning BP on F but terminating it after 10,000 itera-
tions becausethe equations do not corverge; (3) by
sampling solutions of F using SampleSatand comput-
ing an estimate of the positive and negative marginals
from the sampled solutions (the solution marginals);
and (4) by sampling solutions of F using SampleSat,
-propagating them to covers, and computing an esti-
mate of the positive and negative marginals from these
covers (the cover marginals). Note that in (4), we are
sampling true covers and obtaining an estimate. An
alternativ e approad is to use SP itself on F to try to
samplecoversof F, but the issuehereis that the prob-
lem of nding (non-trivial) coversis not self-reducible
to the decision problem of whether covers exist, as
shawn in Section 2. Therefore, it is not clear whether
SP can be usedto actually nd a cover, despiteit ap-
proximating the cover marginals very well.

Recall that the SP-baseddecimation processworks by
identifying variables with extreme magnetization, x-
ing them, and iterating. We will therefore be inter-
ested mostly in what happensin the extreme magne-
tization regionsin these plots, namely, the lower left
corner ( 1; 1) and the upper right corner (+1; +1).

In the left pane of Figure 4 we plot the magnetization
computed by SP on the x-axis and the magnetization
obtained from cover marginals on the y-axis. The scat-
ter plot has exactly 5000 data points, with one point
for eat variable of the formula F. If the magneti-
zations on the two axes matched perfectly, all points
would fall on a single diagonal line from the bottom-
left cornerto the top-right corner. The plot showsthat
SPis highly accurate at computing cover marginals, es-
pecially in the extremeregions at the bottom-left and
top-right.

The middle pane of Figure 4 comparesthe magneti-
zation basedon cover marginals with the magnetiza-
tion basedon solutions marginals. This will provide
an intuition for why it might be better to follow cover
marginals rather than solution marginals whenlooking
for a satisfying assignmem.®> We seean interesting \s-

4 For clarity, the plots show magnetizations for one such
formula, although the trend is generic.

5 Of course, if solution marginals could be computed
perfectly, this would not be an issue. In practice, how-
ever, the best we can hope is to approximately estimate



1.0
1.0

0.5
0.5

Cover Magnetization
0.0
|
Solution Magnetization
0.0
|

-0.5
-0.5

-1.0
-1.0

0.5 1.0
|

Solution Magnetization
0.0
|

-1.0

1.0 05 0.0 05 1.0 -1.0 05
SP Magnetization

Cover Magnetization

T T T
0.0 05 10 1.0 05 0.0 05 10
BP Magnetization

Figure 4: Magnetization plots. Left: SP vs. covers. Middle: coversvs. solutions. Right: BP vs. solutions.

shape” in this plot, which canbeinterpreted asfollows:
xing variables with extreme cover magnetizations is
more consenative compared to xing variables with

extreme solution magnetizations. Which meansthat

variables that are extreme w.r.t. cover-basedmagne-
tization are also extreme w.r.t. solution-basedmagne-
tization (but not necessarilyvice-versa). Recall that

the extreme region is exactly where decimation-based
algorithms, that often x a small set of extreme vari-
ablesper iteration, needto be correct. Thus, etimates
of cover marginals provide a safer heuristic for xing

variables than estimatesof solution marginals.

As a comparisonwith BP, the right pane of Figure 4
shovs BP magnetization vs. magnetization based on
solution marginals for the same 5000 variable, 21000
clauseformula. Since BP almost never corvergeson
such formulas, we terminated BP after 10,000 itera-
tions (SP took roughly 50 iterations to corverge) and
usedthe partially corvergedmarginals obtained sofar
for computing magnetization. The plot showsthat BP
provides very poor estimates for the magnetizations
basedon solution marginals. (The points are equally
scattered when BP magnetization is plotted against
cover magnetization.) In fact, BP appearsto identify

as extreme many variables that have the opposite so-
lution magnetization. Thus, when magnetization ob-
tained from BP is used as a heuristic for identifying

variablesto x, mistakesare often made that eventu-

ally lead to a cortradiction, i.e. unsatis able reduced
formula.

5 DISCUSSION

A comparisonbetweenleft and right panesof Figure 4
suggeststhat approximating statistics over covers (as
done by SP) is much more accurate than approximat-
ing statistics over solutions (as done by BP). This
appearsto be becausecovers are much more coarse

marginals.

grained than solutions; indeed, even an exponertially
large cluster of solutions will have only a single cover
asits represerativ e. This cover still captures critical
properties of the cluster necessarnyor nding solutions,
such as badbone variables, which is what SP appears
to exploit.

We also saw that the extreme magnetization basedon
cover marginals is more consenative than that based
on solution marginals (as seenin the \s-shape" of
the plot in the middle pane of Figure 4). This sug-
gests that while SP, based on approximating cover
marginals, may misssomevariableswith extreme mag-
netization, when it does nd a variable to have ex-
treme magnetization, it is quite likely to be correct.
This provides an intuitiv e explanation of why the dec-
imation processbasedon extreme SP magnetization
succeedsvith high probability on random 3-SAT prob-
lems without having to backtrack, while the decima-
tion processbasedon BP magnetizations more often
fails to nd a satisfying assignmen in practice.

We alsonote that BP and SP have beenprovento com-
pute exact marginals on solutions and covers, respec-
tively, only for tree-structured formulas (with some
simple exceptional casedik e formulas with a single cy-
cle). For BP, solution marginals on tree formulas are
already non-trivial, and it is reasonableto expectit to
compute a fair approximation of marginals on loopy
networks (formulas). However, for SP, cover marginals
on tree formulas are trivial: the only cover hereis the
all- cover. Cover marginals becomeinteresting only
when one goesto loopy formulas, suc as random 3-
SAT. In this case,as seenin our experimerts, it is re-
markable that the SP computesa gaod approximation
of non-trivial cover marginals for non-tree formulas.

We hope that our results have corvincingly demon-
strated that the study of the covers of formulas is very
fruitful and may well lead to a correct explanation of
the succesof SP.
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APPENDIX: DERIV ATION OF THE
SP EQUA TIONS

Section3 shows how to formulate a constraint satisfac-
tion problem P (F) sud that its solutions are exactly
the covers of a formula F. Here we proceedto show
how the belief propagation formalism applied to P (F)
(asdescribedin Section3.1) resultsin the survey prop-
agation equations.

Review of BP. We assume familiarity with the

general form of BP equations, as used for example
by Neapolitan (2004 in Theorem 3.2. In short, BP

uses messagesto communicate information between
nodes of the factor graph (between variable nodes
Xa;::: and function nodesFy; F,;:::). Each message
is a function of one argument, which takes on the

samevaluesasthe variable node end-point of the mes-
sage. There are two kinds of messages:from vari-

able nodes to function nodes (denoted by i ¢ (%)),

and from function nodesto variable nodes (denoted

by g1 x(). In a two-level Bayesian Network,

messagesre computed by (piecewise)multiplying to-
gether the  messagesreceived on all other links.
The messagesre more complicated: they are sums
acrossall possibleworlds (valuesfor argumerts of re-
ceived messageshf products of all-but-one  mes-
sageswith the chosenargumerts. In caseof a deter-
ministic system (which is our case: every world has
probability of either 1 or 0), this is equivalent to sum
of products of messageswith argumerts that are
compatible with ead other as judged by the corre-
sponding function node, Fy or F,. Moreover, if a vari-
able node only has two neighboring function nodes,
then it merely passesreceived messagesrom one
neighbor to the other. Since all variable nodes in
P(F) have degreetwo, we can safely ignore the ex-
istenceof messagesand only focuson messages.
Thus, every Fy node receivesmessage$rom F, nodes
(which we will denote by 4 x) and and every F,
node receives messagesfrom F, nodes (denoted by

x! a), both of which are functions of one argumert,
(rar x;Wx1 a) 2 £(0;0);(0;1); (1;0)g. The BP equa-
tions are constructed by considering the set of com-
patible variable node values given the one xed value
in the argumen.

Let C(x) be the set of all clausescortaining variable
X, and V (a) the set of all variablesappearingin clause
a. Further, let C5(x) be the set of all clausesother
than a where x occurs with the same sign as in a.
Similarly de ne C}(x) to be the set of clauseswhere
X occurs with the opposite sign asin a. Note that
C3(x)[ CY(x)[ fag= C(x).

Equations for Fy. The equationsfor messagesen
from a factor node Fy are given in Figure 5. For the
argumert value of (1;0) the set of compatible values,
asjudged by Fyx when x, = (1;0), is one where there
can be requestsfrom clauseswhere x appearswith the
samesign asin a (and no warnings sert to them), but
there must be no requestsfrom opposite clauses(and
warning must be sert). Similarly for (0; 1), but here
the roles of C3(x) and C}(x) are exchanged, plus the
fact that x sendsa warning to a meansthat it must be
receivinga requestfrom someopposite clause(which is
accourted for by the\ " term). Finally, for the value
(0; 0), there are two possibilities: either at least one
request is received from C3(x) (the rst term in the
sum, analogousto the expressionfor (0;1)), or there
are no requestsat all (the secondterm in the sum).

Equations for F,. Figure 6 shaws equations for
messagesert from a factor node F,. The argumert
value of (1;0) is the easiest: a sendsout a request if
and only if all other variablessendit a warning, sothat
the only compatible valuesare all (0;1). The caseof
(0; 0) is the complemert: a cannot receive a warning



X! a(l;o): ( b! x(0;0)+ b! x(l,O)) b! x(o;l)
b2 C§(x) b2 CY (x)
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xt a(0;1) = b x(0;1)4 (o x(0;0)+ w x(1;0)) b x(0;0)°
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Figure 5: BP equationsfor Fy
al x(l;o): y! a(o; 1)
y2\/¢a)nx
a x(0;0) = (yr a(0;0)+ i a(0;1)) v a(0;1)
y2V (a)nx y2V (a)nx
ar x(0;1) = ( y! a(0;0) + y! a(0;1)) y! a(0; 1)
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Figure 6: BP equationsfor F,
from all other variables, and since x does not send a and
warning, a doesnot senda requestanywhere. The last u L a0
case,(0; 1), is a littte more complicated. The rst part : t v
is the sameas before, but there needsto be a correc- xl a = o x(0;0)
tion term to accourt for two extra possibilities: rst b2C(x)na
it is now possiblethat a issuesa requestto somey S . = 4 a(0:0) o .
if all other variables also senda warning (the positive
term in the sum), and secondit is not possible that Notice that is iust led 10 d
all-but-one variable senda a warning and yet a does otice that ar x IS Just a re'scae al X(_ :0), an
: . that the scaling factor 1 4(0;0)+ i a(0;1) equals
not issuea requestto the last one (the negative term u S . X
vvat yiat yia Rescaling a x(0;0) and

in the sum).

Deriving the SP equations. The expression
for a1 x(0;1) can be simplied by assuming that
yt a(1;0) = 1 a(0;0) for all y, in which caseit
reducesto the expressionfor 4 «(0;0). This as-
sumption is crucial, but not very restrictive. Notice
that it then follows that ; a(1;0) = i a(0;0) (by
inspecting the appropriate expressionsin Figure 5),
and therefore the assumption keepsholding when iter-
atively solving the BP equations, provided it wastrue
at the beginning.

The last step in the derivation is to rename and nor-
malize the terms appropriately soasto \recognize" the
SP equationsin Figures 5 and 6. Let us de ne

Y y1 a(0;1)

yt a(0;0)+ 1 a(0;1)

IN

al x =

y2V (a)nx

ar x(0; 1) in the sameway (and using the assumption
that they are equal) yields 4 x(0;0) = 4 x(0;1) =
1 4 x. Finally, writing down the BP equations for

x1 a(0;1) and i 4(0;0) in terms of these new vari-
ablesresults in the familiar SP equations established
in Braunstein et al. (2005:

Y u

al x = yta 0
y2V (a)nx 5! a+ )S/! a+ y! a
2 3
" Y
x! a — (]— b! x)41 (1 b! x)5
b2 C$(x) b2 CY (x)
3
s Y
x! a — (1 b! x)41 (1 b! x)5
b2 CY (x) b2 C$(x)
o Y
x! a = (1 bt x)
b2 C(x)na

In addition, the expressionsfor marginal probabilities
computed by BP from a xed point of the above equa-
tions can be shown, in a similar way, to be equivalent
to the SP \bias" expressions.
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