
Insights into Parallelism with
Intensive Knowledge Sharing

Ashish Sabharwal1 and Horst Samulowitz2

1 Allen Institute for Artificial Intelligence (AI2), Seattle, WA 98103, USA
AshishS@allenai.org

2 IBM Watson Research Center, Yorktown Heights, NY 10598, USA
samulowitz@us.ibm.com

Abstract. Novel search space splitting techniques have recently been
successfully exploited to paralleliz Constraint Programming and Mixed
Integer Programming solvers. We first show how universal hashing can
be used to extend one such interesting approach to a generalized setting
that goes beyond discrepancy-based search, while still retaining strong
theoretical guarantees. We then explain that such static or explicit split-
ting approaches are not as effective in the context of parallel combina-
torial search with intensive knowledge acquisition and sharing such as
parallel SAT, where implicit splitting through clause sharing appears
to dominate. Furthermore, we show that in a parallel setting there ex-
ists a surprising tradeoff between the well-known communication cost
for knowledge sharing across multiple compute nodes and the so far ne-
glected cost incurred by the computational load per node. We provide
experimental evidence that one can successfully exploit this tradeoff and
achieve reasonable speedups in parallel SAT solving beyond 16 cores.

1 Introduction

There have recently been several successful proposals for parallelizing combina-
torial search and optimization, especially in the context of Constraint Program-
ming (CP) and Mixed Integer Programming (MIP), such as by Régin et al. [25],
Moisan et al. [22, 23], and Fischetti et al. [13]. A desirable strength of these and
prior approaches such as the guiding path heuristic [31] is that they achieve paral-
lelization without any communication between the compute cores. In one way or
another, they split the underlying search space upfront or statically amongst the
k available compute cores, which obviates the need for communication. Unlike
search schemes based on global load-balancing or work-stealing [10, 21, 26, 27],
these communication-less approaches compute a static assignment of subprob-
lems (or of subtrees induced by a static assignment of search tree leaves) to each
compute core.

We begin by discussing these static splitting, communication-less approaches
and proposing a novel generalized static search space splitting scheme that, un-
like some of these recent proposals, is not limited to a particular search strategy
(e.g., discrepancy-based search) or a class of problem instances. This general



2 Ashish Sabharwal and Horst Samulowitz

scheme uses randomly generated XOR or parity constraints and relies on their
desirable universal hashing properties in order to achieve a dynamic balanced
split of the search space amongst the compute cores. Prior works by Bordeaux
et al. [8] and Plaza et al. [24] have alluded to XOR-based splitting, but only from
an empirical perspective and without a formal analysis, especially with respect
to the balanced effect of pruning any large-enough subtree of the whole space.

The formal correctness argument for our XOR-based splitting scheme high-
lights certain assumptions crucial to the success of some of the recent paralleliza-
tion proposals. We explain why these assumptions, unfortunately, often fail in
the context of search algorithms that dynamically learn from failures, such as
CDCL (conflict-directed clause learning) solvers for propositional satisfiability
(SAT) and Lazy Clause Generating CP solvers. In combinatorial search algo-
rithms that support knowledge acquisition from failures or conflicts, intensively
sharing that learned knowledge can provide an implicit way of splitting the
search space explored by each core. As long as the solvers running at each core
are sufficiently different, one of them will encounter a certain failed state before
others and, by informing others of the reason of its failure, will indirectly prevent
them from exploring this failed state as well as any search sub-space that fails
for the same reason.

When it comes to knowledge sharing, it is common wisdom that communi-
cation across a network is costly. When designing distributed constraint solvers
running on multiple machines and sharing information, it is deemed desirable
to pack as many solvers on compute cores on individual machines as possible,
so that inter-machine network latency does not hurt performance. This common
wisdom stems from the undisputed fact that communicating across processes (or
threads) on a single machine is much faster than communicating across differ-
ent machines. While true, this reasoning ignores the memory bandwidth aspect,
which can in principle have a negative impact on solvers. For example, it is folk-
lore knowledge that running multiple copies of the MIP solver CPLEX [18] on
the same machine notably degrades performances. The main reason is that more
threads running memory intensive applications lead to more cache misses and
involuntary context switches, both of which negatively impact performance. This
happens even if one uses fewer threads than the number of available compute
cores, because multiple cores tend to share at least the L3 cache. While cache
performance of SAT solvers on a single compute node has been analyzed earlier
[1, 32], its study in the context of multiple compute nodes and the resulting
trade-offs remain unexplored.

As a motivating example, we consider the performance of the state-of-the-
art parallel SAT solver Plingeling [6] across k = 1, 2, 4, . . . , 32 cores of a single
32-core machine. Plingeling, like most current parallel SAT solvers, implements
implicit search space partitioning. The results (geometric average runtime on our
dataset, discussed later) are shown in Figure 1. We observe a sharp decline in
performance when going from 16 to 32 cores. In this work, we ask: Is this decline
in performance caused mainly by duplication of work by cores given the lack of
a static search space splitting mechanism, or by over-utilization of the memory



Insights into Parallelism with Intensive Knowledge Sharing 3

50

100

200

400

1-core 8-core 16-core 32-core 64-core

G
e

o
m

e
te

ri
c 

M
e

a
n

  
(L

o
g

2
-S

ca
le

)  Plingeling using only a single

node

 GlucoseX10 using various

node/core configurations

Fig. 1. Performance of Plingeling across k = 1, 2, 4, . . . , 32 core on a single node com-
pared to GlucoseX10 using various node-per-core configurations up to 64 cores.

bus? We find that reduced performance can be attributed to the latter and,
more surprisingly, to such a large extent that one can, in fact, even successfully
trade off the intra-node memory bandwidth bottleneck with the presumably high
inter-node network communication cost.

Can this surprising trade off be successfully exploited in practice? To assess
this, we first implement as a baseline two static splitting strategies that are
promising in the context of SAT, one of them based on universal hashing through
XOR constraints with strong theoretical guarantees as mentioned earlier. While a
careful implementation of these strategies allows full knowledge sharing amongst
the compute cores as well as the utilization of the highly effective dynamic search
heuristics embedded in SAT solvers, we find that static splitting strategies have
limited success in the context of SAT. However, exploiting our findings about the
communication vs. node utilization trade-off, we show that a simple distributed
variant of the Glucose 3.0 solver [3], created using the SatX10 framework [7]
and performing implicit search space splitting by sharing the shortest 5% of the
learned clauses, can continue to scale (i.e., have increasing speedups) on up to
64 cores when the copies of the solver are split carefully across multiple compute
nodes. As shown in Figure 1 on our dataset, this simple distributed solver is
more than competitive with Plingeling, the winner of the parallel track in the
Application instance category of the 2013 SAT Competition [4]. Even though
slower by as much as 1.5x when using 1 core, it clearly outperforms Plingeling
as one moves to 32 or more cores, demonstrating that our insights can indeed
be successfully exploited in practice.3

3 We emphasize that this comparison is not meant to argue that GlucoseX10 is superior
to Plingeling, but rather to illustrate that there exist unusual yet successful ways of
making use of available compute resources.



4 Ashish Sabharwal and Horst Samulowitz

2 Generalizing Static Search Space Splitting

We begin this section with a brief recapitulation of recently proposed successful
parallelization strategies for CP and MIP search and optimization using what
we will refer to as static search space splitting. With k compute cores, the search
space is split upfront into k disjoint subspaces and then each core proceeds to
search in the subspace it is responsible for. The novelty here is to achieve such
a splitting in a way that requires no communication between the compute cores
what-so-ever, which means communication cost never becomes a bottleneck as
the number of compute cores is increased.

An interesting recent example of explicit search space splitting is the so-called
embarrassingly parallel search (henceforth referred to as EPS) [25]. Suppose the
problem instance has n variables, all of which are binary. The idea is to simply
split the entire search space of size 2n into 2ñ disjoint subspaces, by fixing the
value of some ñ variables, ñ < n, in all possible ways. The resulting 2ñ subprob-
lems are then divided up equally amongst k compute cores. As long as 2ñ � k,
by the law of large numbers, one expects the distribution of overall computa-
tion load across the compute cores to be roughly uniform. A related scheme [13]
recently proposed in the context of MIP makes each core branch on the top ñ
variables and then choose a 1/k fraction of the resulting child nodes in a round
robin fashion.

Another explicit parallelization technique—which in fact inspired some of
our work—is the recent proposal by Moisan et al. [22] who study parallelization
of a particular class of search heuristics in the context of CP, namely limited
discrepancy-based search (LDS) [16]. We will refer to this technique as PLDS.
It was shown that it is possible to assign the 2n leaves of the entire search tree
to the k available cores such that the leaves are visited by the k cores jointly
in roughly the same order as a sequential LDS and the total number of search
nodes visited by each core c (in the subtree induced by the leaves assigned to c)
is no more than (2n/k) log k. Further, and more importantly, each of the cores
is guaranteed to benefit roughly equally from any dynamic pruning of a subtree
T of the entire search space by constraint propagators. All this is achieved by
PLDS notably without any communication between the processors. This idea
can also be extended to Depth-bounded Discrepancy based search (DDS) [23].

In the context of SAT, earlier work by Bordeaux et al. [8] suggested a com-
pletely distributed strategy where each core fixes a small number ñ of variables
(e.g., at random) without coordinating with other cores. Each core is allowed to
independently select which ñ variables it wants to fix and the values it wants to
assign to them. To ensure completeness as well as to address the high likelihood
of load imbalance in this context, the authors employed an interesting strategy
of allowing the solver at each core to backtrack over the top ñ variables—but
only after it had proved its restricted sub-formula to be unsatisfiable. The au-
thors also suggested more traditional search space splitting strategies that added
new constraints to split the search space into disjoint subspaces, but, perhaps in
part because of no knowledge sharing, they found the distributed variable fixing
strategy to be the most effective. More recently, Heule et al. [17] and van der



Insights into Parallelism with Intensive Knowledge Sharing 5

Tak et al. [30] have proposed the use of more complex inference techniques than
unit propagation to split the search space in the first phase of search and then
solve the resulting sub-problems in parallel without knowledge sharing.

2.1 Generalized Splitting Using Universal Hashing

The theoretical balancing guarantees provided by the PLDS approach can in
fact be extended to a more general setting for dynamic search heuristics that
go well beyond LDS and DDS, including the conflict analysis driven heuristics
employed by SAT solvers (e.g., VSIDS) as well as impact based search (IBS) in
CP. We discuss here a novel way to achieve this in a search-independent and
problem-independent manner, using parity or XOR constraints.

XOR constraints of length ` over binary variables xi are constraints of the
form

∑`
i=1 xi = p mod 2, where p ∈ {0, 1} is referred to as the parity of the

constraint. When generated at random by choosing the set of ` variables as
well as the parity p uniformly amongst all choices, XOR constraints (of large
enough length) act as a family of uniform hash functions, resulting in desirable
search space splitting properties that have been exploited in theoretical com-
puter science [5, 29] as well as in the design of practically efficient approaches
for approximating the number of solutions of a combinatorial problem and for
probabilistic inference [9, 11, 14]. In the interest of space, we refer the reader to
any of these other works for formal properties of XOR constraints. In our con-
text, they have precisely the key properties exploited by the PLDS approach.
We discuss below how this observation can be exploited.

Consider a sequential search algorithm S. Given a problem instance I on n
binary variables, let σ be the ordered sequence of the subset of the 2n leaves
(at depth n) of the underlying search tree T (of size 2n) that S visits when
operating on I. To create a parallel version Sk of S that utilizes k compute
cores, where for simplicity of exposition we assume k is a perfect power of 2, we
generate at random log k sets Xj , 1 ≤ j ≤ log k, of ` variables each and restrict
the search space explored by core i, 1 ≤ i ≤ k, to the sub-space determined by
XOR constraints Cij defined as

∑
x∈Xj

x = bij mod 2, where bij is the j-th bit

of the log k bit binary representation bi of the integer i. Let Ci =
∧
j Cij . The

i-th solver Si of Sk running on core i operates on the restricted problem instance
I ∧ Ci. Si follows the original leaf sequence σ, but simply skips the leaves that
do not satisfy its XOR constraints Ci. For efficiency, if there is a subtree T of
T none of whose leaves satisfy Ci, Si must identify this fact and not waste time
exploring T at all. This, in our case, is easily achieved as at least one constraint
Cij∗ for some j∗ must be violated by the partial truth assignment that defines
the root node of T , which means that the XOR propagator for Cij∗ would make
Si fail immediately as soon as it reaches T .

This restriction scheme ensures that every pair Si, Si′ of solvers operates in
disjoint subspaces of T , and that the k cores together cover all of T . Formally:

Proposition 1. For constraints Ci as defined above and for i 6= i′, Ci∧Ci′ = ⊥
and

∨
i Ci = >. Further, (I ∧ Ci) ∧ (I ∧ Ci′) = ⊥ and

∨
i(I ∧ Ci) = I.



6 Ashish Sabharwal and Horst Samulowitz

Proof. Let j∗ be a bit in which the log k bit binary representations of i and i′

differ, i.e., bij∗ 6= bi′j∗ . Then (Ci ∧Ci′) = (
∧
j Cij)∧ (

∧
j Cij)⇒ (Cij∗ ∧Ci′j∗)⇒

(
∑
x∈Xj∗

x = bij mod 2) ∧ (
∑
x∈Xj∗

x = bi′j∗ mod 2) ⇒ (bij∗ = bi′j∗), which,

by the choice of j∗, is never the case. Hence, Ci ∧ Ci′ = ⊥.
On the other hand,

∨
i Ci =

∨
i

∧
j Cij =

∧
j

∨
i Cij =

∧
j

∨
i(
∑
x∈Xj

x = bij
mod 2). Since i spans the range {0, 1, . . . , k − 1} and we are working with log k
bit representations, for each j there must exist an i such that bij = 0 and an i′

such that bi′j = 1. Hence,
∨
i(
∑
x∈Xj

x = bij mod 2) = > for every j, implying∧
j

∨
i(
∑
x∈Xj

x = bij mod 2) = > and finishing the proof that
∨
i Ci = >.

The remaining claims now follow from these results. First, (I∧Ci)∧(I∧Ci′) =
I ∧ (Ci ∧ Ci′) = ⊥. Next,

∨
i(I ∧ Ci) = I ∧

∨
i Ci = I ∧ > = I. ut

We thus have a static partition of the search space amongst the k solvers.
Moreover, the partition is balanced in the sense that each solver Si gets precisely
a 1/k fraction of the overall 2n size search space T (irrespective of I). Most
interestingly, the uniform hashing properties of XORs guarantee that, with large
enough `, with high probability, every large-enough subspace of T has roughly
equal representation in each of the k compute cores, which act as k “buckets”
for the underlying hash function. This is formalized in the following theorem,
which notably is independent of the properties of the search algorithm S (e.g.,
using LDS or not) or of the problem instance I.

Theorem 1. Let Sk be the parallel constraint solver for k cores as described
above, operating on a problem instance I over n binary variables forming the 2n

size search space T . For ` = n/2, ε ∈ (0, 1), δ > 0, and k ≤ 2n/(2+δ),

1. the entire subtree Ti of T induced by the leaves assigned to Si contains no
more than (2n+1/k) log k internal and leaf nodes combined; and

2. for any arbitrarily chosen subtree T of T with L ≥ k2+δ/ε leaves, with prob-
ability at least 1 − ε over the choice of the random XOR constraints, the
following holds: For any core i, the number of leaves of T that are assigned
to Si lies within µ · (1± k−δ/2) where µ = L/k is the expected value.

Proof. To argue that the first claim holds, we observe that Ti has exactly 2n/k
leaves, which implies that the number of internal nodes of Ti with two children
must be exactly 2n/k − 1. Thus, the total number of nodes in Ti is higher
precisely when it has more internal nodes with only one child. As can be seen
from a tree rotation argument, the number of internal nodes with only one
child is maximized when the leaves of Ti, all at depth n of T , are uniformly
spread apart at distance k from each other. In this case, Ti contains all internal
nodes of T up to depth n − log k, for a total of 2n−log k+1 − 1 nodes, each of
which is extended to depth n by a unique path of length log k containing nodes
with one child. It follows that the number of nodes in Ti is upper bounded by
(2n−log k+1 − 1) log k < (2n+1/k) log k as desired.

In order to prove the second claim, we capitalize on the known fact that log k
random XORs of length n/2 act as a universal family of hash functions on the 2n

leaves of T , placing the leaves pairwise independently into k different “buckets”,



Insights into Parallelism with Intensive Knowledge Sharing 7

which correspond to our k cores. Let Li be a random variable (with randomness
over the choice of XORs) capturing the number of leaves of T assigned to core
i. Pairwise independence of the assignment of leaves to cores implies that the
variance Var(Li) of Li is no more than its expected value E(Li) = L/k = µ.
Applying first the Chebychev inequality and then the union bound,

Pr
[
|Li − µ| ≥ µk−δ/2

]
≤ Var(Li)

µ2k−δ
≤ µ

µ2k−δ
≤ 1

k

k2+δ

L
≤ ε

k

⇒ Pr
[
∃i. |Li − µ| ≥ µk−δ/2

]
≤

k∑
i=1

Pr
[
|Li − µ| ≥ µk−δ/2

]
≤ ε

Taking the complement of this probability finishes the proof. ut

We note that although the theorem is stated for ` = n/2, Ermon et al. [12]
have recently shown that certain desirable hashing properties still hold with
XORs of length `� n/2, which are often much easier to propagate.

As an illustration of the result, suppose ε = 1/n, δ = 1, and T is any subtree
of the search space with L ≥ nk3 leaves. Then the theorem states that with
probability at least 1 − 1/n over the choice of random XORs, the number of
leaves of T assigned to Si will be within L/k · (1± 1/

√
k), i.e., very close to the

ideal balancing value of L/k. As a consequence, each core will benefit roughly
equally if a constraint propagator prunes T .

2.2 Implementing XOR-Based Splitting with Knowledge Sharing

While the above reasoning shows that adding randomly generated XOR con-
straints can, in principle, qualitatively provide the guarantees of PLDS in a
much more generic setting, it is not obvious how best to implement this strat-
egy. One of the parallelization suggestions by Bordeaux et al. [8] was in fact to
add random XOR constraints by converting then into a CNF formulation. An
XOR constraint with ` variables, however, requires adding 2`−1 clauses, which
quickly becomes impractical as ` grows.4 Thus, for practical reasons, we limit
our evaluation to small values of `. Bordeaux et al. did not find this to be effec-
tive, but their tests were performed without communication while we now test
the approach in the presence of knowledge sharing, in the context of SAT. This,
however, immediately raises an implementation challenge, which we discuss next.

Since each Si operates on the original instance conjoined with new constraints
that differ from core to core, clauses learned by one core may not be valid for
other cores. In principle, one can label each learned clause C as sharable or
not based on the information used to derive C. However, due to subtleties in the
implementation of modern SAT solvers, it is insufficient to simply check whether
the conflict analysis that led to the derivation of C involved one of the clauses
encoding an XOR constraint. Other operations in the solver, such as propagation

4 One could alternatively use O(`) new variables to encode the XOR constraint, but
this is known to slow down the search [14].



8 Ashish Sabharwal and Horst Samulowitz

of unit literals learnt based on XOR constraints and clause base reductions, must
also be appropriately altered to take the effect of the XOR constraints that differ
from core to core.

An interesting alternative to explicitly adding new constraints X to the for-
mula F is to alter the branching heuristic such that the solver automatically
searches only in the assignment subspace that satisfies the constraints X . The
idea is to pre-compute all solutions to X over the set of variables appearing in X
and add them to a solution pool S. Note that each σ ∈ S is a partial assignment
for F . Now one can iterate through these partial assignments σ1, σ2, . . . , σ|S| ∈ S,
moving from σi to σi+1 as soon as the solver refutes the subtree under σi. Since
we do not add XORs explicitly as constraints and instead just branch in a way
that is consistent with XORs, the original formula must logically entail any learnt
clause. Furthermore, since we enumerate the solution pool S exhaustively the
approach is both sound and complete.

A notable advantage of this approach is that all clauses learnt by any core
are valid for all other cores as well, and can thus be freely shared.5 This obviates
the need to implement mechanisms to decide which clauses are safe to share and
which aren’t. On the other hand, for the approach to be practical, the solution
pool S must have a succinct representation that the solvers can exploit. For
example, if X is the conjunction of log k XOR constraints of length ` each on
disjoint sets of variables, then |S| = (2`−1)log k = k`−1, which can quickly become
huge as k grows. To avoid this blow up, we instead use log k solution sub-pools
of size 2`−1, one for each XOR constraint. The branching heuristic first fixes all
variables from one sub-pool before moving on to the next sub-pool.

Our implementation includes a range of variations and extensions. For in-
stance, we experimented with the setting where one core remains completely
unaltered while all other cores employ XOR based branching. This strategy was
motivated by the fact that altering branching decisions can have a tremendous
impact on the search, and adding one unchanged solver to the pool of solvers
would retain some of the original search pattern and the solver’s flexibility. Fur-
thermore, when branching according to the XOR variables at the top of the
search tree we take propagation results directly into account so that an implica-
tion that falsifies the current XOR assignment causes us to directly move on to
the next assignment. Since we have a sequence of XORs to branch on, this often
allows us to skip entire sets of assignments.

2.3 Limits of Static Splitting

To our surprise, none of the approaches discussed above was truly effective in
parallelizing SAT solvers. We tried several variations and parameter settings
and will describe some representative results in Section 3, Table 1. As we discuss
next, the reason might lie in the “rigid” static search space splitting interfering
with the highly dynamic conflict-directed search performed by SAT solvers.

5 Clauses learnt at core i could be filtered based on the alignment of XORs between
cores i and j so that only the ones that have a chance of ever being triggered at core
j are shared with it.



Insights into Parallelism with Intensive Knowledge Sharing 9

In general, the recent static splitting proposals discussed at the beginning of
this section and which inspired our XOR-based splitting mechanism, unfortu-
nately, have significant limitations in the context of search strategies that apply
aggressive search space pruning through powerful propagators or that use infor-
mation learned from failures to guide future search.

For example, the EPS approach and its variation for MIP implicitly assume
that once the huge pool of 2ñ subproblems has been created, one simply must
resolve each subproblem independently and knowledge learned from solving one
subproblem cannot significantly help inference on other subproblems. This is
clearly not the case for CDCL solvers which are heavily guided by clauses learned
from conflicts and are in fact able to quickly prune new subproblems based on
experience from previously encountered subproblems. The same applies also to
CP solvers that perform conflict analysis and lazy clause generation [28].

The PLDS and XOR-splitting approaches, on the other hand, do not address
the rather common case where the number of nodes s visited by a sequential
search algorithm is significantly less than 2n. In fact, s being vastly smaller than
2n on real-world instances of interest is precisely what allows us to tackle large
NP-complete problems in a reasonable amount of time. For example, consider
an infeasible instance where fixing well-selected ñ � (n − log k) variables lets
constraint propagators already deduce infeasibility. With k = 1024, this condi-
tion holds whenever ñ is much smaller than n − 10, which most SAT and CP
solvers will guarantee fairly easily. While it does holds that each Si will not pro-
cess more than (2n+1/k) log k nodes and subtree pruning will positively impact
each Si roughly equally, this is not a very useful guarantee as even a well-guided
sequential search would take only 2ñ � 2n/k steps to begin with! In general,
uniform splitting of the näıve search space of size 2n across k cores does not
say much about speedups being close to k unless the underlying search algorithm
works in a rather brute force manner.

Further, PLDS has so far been demonstrated to be effective in a setting where
the leaves of the search tree are much more costly to process than internal nodes.
This, however, is usually not the case in most SAT, CP, and MIP applications,
where node processing time often decreases as one goes deeper in the search tree.

Finally, forcefully fixing variables at the top of the search tree, as is the case
in our XOR implementation and the random prefix method [8], seems to often
interfere with dynamic branching choices that tend to make search more effective.
This is especially true for SAT solvers, which heavily rely on recent conflicts for
branching decisions, and variable activities maintained by them often change
very rapidly. This behavior is also reflected in improved performance that we
observed when using shorter XORs and random prefixes.

3 Implicit Splitting through Intensive Knowledge Sharing

An alternative to static splitting is implicit search space splitting, where the k
compute cores start exploring the entire search space independently but dynami-
cally communicate to each other—ideally in a succinct fashion—which subspaces



10 Ashish Sabharwal and Horst Samulowitz

Table 1. Performance of various search space splitting and knowledge sharing ap-
proaches for SAT, using k = 32 cores

Search Space Splitting Clause Sharing Runtime #Solved
Approach Length (%) (sec) (count)

Implicit – 2 139 62
Implicit – 5 119 63
Implicit – 8 113 64

Static, 5 XORs 2 5 132 60
Static, 5 XORs 3 5 161 59

Static, Random Prefix 5 5 141 61
Static, Random Prefix 10 5 173 59

they have already explored. We argue that in combinatorial search algorithms
that learn from failures, such as CDCL SAT solvers and CP solver employing
Lazy Clause Generation (LCG), implicit search space splitting achieved by shar-
ing succinct reasons of failures can be much more effective than explicit search
space splitting schemes such as those discussed above. When such solvers en-
counter a “conflict” or a failed state, they analyze the reason of the failure in
terms of constraint propagations and learn a clause (or a small set of clauses)
that would prevent the solver from wasting time in other states that fail for a
similar reason. By sharing such learned clauses with other cores, one can implic-
itly achieve search space splitting—as long as there is enough variation among
the solvers executing on different cores that one of them encounters a partic-
ular failed state before others do. While simply having different random seeds
at each core can make the search sufficiently different, in our experiments we
vary also some of the solver’s parameters, such as activity decay rate and restart
frequency, across various cores.

When viewing knowledge sharing as implicit search space splitting, one must
revisit the heuristics commonly used to decide how much to share and when.
Currently employed heuristics, again guided by the common wisdom of commu-
nication latency being the main hurdle to avoid, tend to share perhaps too little
information [19]. As the representative results in Table 1 (to be discussed shortly)
demonstrate, it can be better to pay the price of additional communication for
implicit search space splitting than use explicit splitting.

The results throughout the paper are for experiments on a cluster of 32-core
compute nodes. Each node is a 4x8 3.8 GHz Power7 machine (CHRP IBM 9125-
F2C), 4 MB cache per CPU, and 128 GB of RAM. The nodes are connected via a
network that supports the PAMI message passing interface [20]. The evaluation
is on SAT Race 2010 instances (all industrial/application category) restricted to
the 73 that 1-core Glucose 3.0 could not solve within 10 seconds. The timeout
(wall-clock) used was 5,000 seconds; our results remain qualitatively unchanged
for smaller timeouts as well.



Insights into Parallelism with Intensive Knowledge Sharing 11

In Table 1, we compare (a) the implicit splitting approach with each core
sharing the shortest 2%, 5%, and 8% of its learned clauses;6,7 (b) the XOR-
based explicit splitting approach with XORs of lengths 2 and 3; and (c) the
“random prefix” approach of Bordeaux et al. [8] fixing 5 or 10 variables and
enhanced with sharing the shortest 5% of the learned clauses. For the XOR-based
splitting approach, longer XORs achieved more load balancing as expected but
worsened per-core performance as XOR constraints do not unit propagate very
well. Shorter XORs led to significantly increased load imbalance, but we could
counter this and somewhat improve the overall performance by (i) restarting an
early finishing core on the full problem instance (no XORs) or (ii) using one
additional core in parallel on this full instance, in both cases continuing to share
information. The table reports numbers for the latter, which, as we see, was still
insufficient to outperform implicit search space splitting.

Implicit sharing was nearly always the best and sharing 5% yielded good,
stable performance for various values of k. This is the setup we use henceforth.

4 The Communication-Utilization Tradeoff

Suppose we have two machines M1 and M2 with 32 compute cores each. Let S
be a solver that we can run in parallel on one or both of these machines, and we
can share information learned from failures across copies of S running on these
machines. We are interested in minimizing the time the slowest of the parallel
copies of S takes. When running k ≤ 32 copies of S on a problem instance I, is
it better to run k copies on M1 or k/2 copies each on M1 and M2?

The answer, it turns out, is not that straightforward. It depends on k (in
relation to the number of cores, 32, on each machine), the amount c of commu-
nication between each pair of copies of S, and the intensity of memory accesses
(and the resulting cache hits and misses) performed by S. As one might expect,
when k � 32 and c is small, either option results in about the same performance.
As one might also expect, when k � 32 but c is substantial, network latency
does play a significant role and it is better to run k copies on M1 rather than
communicate across machines. On the other hand, when k ∼ 32 but the amount
c of communication is very small, the latency of inter-machine communication
does not play a significant role and it is actually better to run k/2 copies on two
machines because constraint solvers often require high memory bandwidth and
interfere (at the system level) more with each other the more copies of them are
run in parallel on a single machine (we quantify this interference later in the

6 Sharing of the shortest x% learned clauses is implemented by maintaining a dynamic
cutoff length L such that all learned clauses of length up to L are shared. L is adjusted
periodically to achieve the x% sharing target. In principle, x itself could be adjusted
based on the total number k of cores or properties of the problem instance.

7 We also experimented with more sophisticated sharing schemes such as those based
on the LBD level of the learned clause [3], but our main findings remained unaffected.
To avoid unintended consequences of complex sharing mechanisms, we report results
on the simplest setting which still achieved state-of-the-art performance on 64 cores.



12 Ashish Sabharwal and Horst Samulowitz

paper). Remarkably, we find that this trend continues to hold for k ∼ 32 even
when the amount c of communication is high. Specifically, even if each copy of
solver S shares with every other k − 1 copy as many as 5% of the clauses that
it learns, it is better to run k/2 copies each on M1 and M2 and pay the price of
inter-machine network communication than have k copies compete for memory
bandwidth on M1. E.g., it is often better to run 16 copies on 2 machines, and
sometimes even better to run 8 copies on 4 machines, than run 32 copies on a
single machine with 32 cores. The best allocation of cores across nodes is clearly
dependent on the machine type. However, our empirical observations suggest
that the configuration process does not have to be very fine grained.

We note that with k = 32 copies, sharing 5% of the learned clauses results
in a significant amount of communication as each copy of S, when generating m
learned clauses per second on its own, is expected to receive m∗(k−1)∗5/100 =
1.55m clauses from other copies of S. In other words, each copy listens more to
others than spend time doing its own deductions.

4.1 Time Profile of SAT Solvers

When working in a parallel setting where solvers run possibly on different ma-
chines and intensively share information, it is important to understand where
these solvers spend most of their time and what role does the communication
cost play. For CDCL SAT solvers, the total time T can be divided up as follows:

T = Tconf + Tprop + Tcomm + Tmisc

=
Nconf

Rconf
+
Nprop

Rprop
+
Ncomm

Rcomm
+ Tmisc

Here Tconf represents the total time spent performing conflict analysis, Nconf

represents the number of times conflict analysis is performed, and Rconf =
Nconf/Tconf is the associated rate, i.e., time per conflict analysis. The other sym-
bols similarly correspond to the time, number, and rate of unit propagations,
and of communication between cores. Since our main interest is in studying
parallelization, we will compute and report all times in terms of wall-clock time.

There have been studies suggesting that SAT solvers spend a substantial
amount of time performing unit propagation, and this observation has been used
to help understand the behavior and limitations of parallel SAT solvers [15]. To
make the numbers concrete in our setting and with our solver, we computed the
values of Tconf and Tprop for Glucose 3.0 on our dataset. Figure 2 shows the result
in relative terms as a percentage of T . To make relative numbers meaningful, the
dataset was restricted to instances needing at least 30 seconds to solve. Clearly,
unit propagation does dominate the time Glucose spends solving most instances,
71.01% on average8 and never less than 40% on our dataset. Conflict analysis
is the next most expensive operation. It can vary from 5% to 45%, with the
geometric average being 12.45%. We will return to these observations later.

8 All results are reported as a geometric mean, which is often more robust to high
outliers than arithmetic mean. Results remain qualitatively unchanged either way.



Insights into Parallelism with Intensive Knowledge Sharing 13

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
e

la
ti

ve
 T

im
e 

Sp
e

n
t 

(%
 o

f 
to

ta
l w

al
lc

lo
ck

 t
im

e 

Instances, sorted by difficulty 

Miscellaneous
Conflict Analysis
Unit Propagation

Fig. 2. Relative split of the total time spent by Glucose into Tconf, Tprop, and Tmisc

50

55

60

65

70

75

80

85

90

95

100

%
 o

f 
co

n
fl

ic
ts

/s
ec

o
n

d
 r

el
at

iv
e 

 t
o

 1
 c

o
re

1 core 4 cores

8 cores 16 cores

32 cores

Fig. 3. Impact on Rconf when running k = 4, 8, 16, 32 independent copies of Glucose.
Shown, for a selected set of instances, is Rconf as a percentage of the baseline Rconf

obtained by running only a single copy of Glucose.

While it is folklore knowledge that running k independent processes on a
single compute node with m cores can slow down each process as k approaches m,
the large extent of slow down is rather surprising for SAT solvers. To quantify this
effect, we ran k independent copies of the 1-core solver on a compute node with
32 cores. The plot in Figure 3, which shows the results on individual instances
where Glucose on 1 core took between 600 and 1,800 seconds, demonstrates that
the rate Rconf of conflict analysis is significantly reduced as k increases, by as
much as 45% when increasing k from 8 independent copies to 32 copies. We
obtained similar results for Rprop (omitted due to space limitation).

4.2 Communication Cost vs. Node Utilization

Now suppose we run k cooperating copies of a solver in a parallel setting with
information sharing among the copies. How does the slow down seen when run-



14 Ashish Sabharwal and Horst Samulowitz

ning k ≈ m copies on a single compute node compare with the communication
cost incurred when running, say, k/2 copies on two different compute nodes?

70

90

110

130

150

170

190

1 2 4 8

G
e

o
m

e
tr

ic
 M

e
a

n
 R

u
n

ti
m

e
 (

se
c)

Number of Nodes

k=8 cores

k=16 cores

k=32 cores

k=64 cores

Fig. 4. Trade-off: communication cost vs. node utilization

Figure 4 depicts this trade-off, where on the horizontal axis we have the num-
ber N of compute nodes used, on the vertical axis is the performance (measured
as the geometric mean of the runtimes across instances), and each curve cor-
responds to a different total number k of cores used in parallel. Each compute
node thus runs k/N solvers in parallel.

While for small k (e.g., k = 8) performance, as expected, drops when in-
creasing N due to the communication overhead, for larger values of k, increasing
N surprisingly leads to significantly better performance. For example, the data
shows that when wanting to run k = 32 solvers in parallel, it is substantially
better to run only k/N = 16 or even 8 solvers per compute node than to fully
utilize the node by running k = 32 solvers on it. Based on these findings, we
used the following configurations of N nodes with k/N cores per node (for a
total of N ×k/N = k cores) produce data for the GlucoseX10 curve in Figure 1:
1×1 = 1, 2×4 = 8, 2×8 = 16, 4×8 = 32, and 8×8 = 64.9 The figure shows that
GlucoseX10, while worse than Plingeling for k = 1, continues to scale reasonably
well even up to k = 64 and clearly outperforms Plingeling for k > 16.

To understand this behavior, let us consider the time profile of SAT solvers
discussed earlier. By increasing N and keeping everything else unchanged, we
must clearly decrease the communication rate Rcomm. Assuming Tmisc is not
affected significantly and neither are the total numbers Nconf and Nprop of con-
flicts and unit propagations, respectively, the only way the overall time T can
decrease, is for one or both of the rates Rconf and Rprop to significantly increase.
This, indeed, is the case. Across all problem instances Nconf is not systematically
altered one way or another by changing N from 1 to 4 with k = 32 cores in total.

9 While the specific numbers reported here are based on evaluation on our compute
hardware, our qualitative findings are likely to be applicable to other compute sys-
tems as well. Simple experimentation can be used to identify the most effective split
of k cores of a parallel solver across multiple compute nodes.



Insights into Parallelism with Intensive Knowledge Sharing 15

However, as expected, Rconf increases quite consistently across all instances and
the geometric mean of Rconf is roughly 20% larger when using 4 nodes compared
to 1 node. A similar trend holds also for Nprop and Rprop.

These results highlight the rather surprising tradeoff between the utilization
of each compute node and the communication cost across multiple nodes. They
also show that this tradeoff can be fruitfully exploited.

5 Concluding Remarks

Limited intra-node memory bandwidth has a substantial impact on the per-
formance of today’s combinatorial search methods when several such solvers,
or their parallel versions, operate on a single machine. One may näıvely con-
sider this impact smaller than the usually high latency of communication across
a network. Our results, however, demonstrate that one can significantly gain
in performance by distributing a parallel solver across multiple machines even
when the solver employs extensive knowledge acquisition and sharing. For exam-
ple, a SAT solver learning around 1,000 clauses per second and sharing 5% of
what it learns with other 31 solvers in turn receives 1,000 × 31 × 0.05, or over
1,500 clauses per second. Even then, as our results show, distributing 32 cores
across 4 or 8 compute nodes pays off. A testament to the practical importance
of this insight is that one is able to significantly outperform the state of the art
in parallel SAT solving on 32 or more cores.

This is, of course, not a complete solution to effective parallelization of SAT
solvers or CP solvers with lazy clause generation. By using only a subset of the
available cores on a machine and letting others idle, we are essentially wasting
resources. However, our results suggest that, rather than allocating idle cores to
other solvers running in parallel, one should consider other uses of the idle cores.
In particular, it may be worthwhile revisiting operations such as unit propaga-
tion and conflict analysis, which often take up nearly 90% of the solver’s time
and must be performed in any case. Our results motivate parallel propagation
and conflict analysis schemes as was also suggested earlier by Hamadi and Win-
tersteiger [15]. In this context, it is important to note that while unit propagation
is P-complete [15], the only known theoretical consequence of this completeness
observation is that a q-step unit propagation sequence cannot be parallelized to
logi q parallel steps for any constant i. However, this does not preclude reduc-
tions by large constant factors or even asymptotic reductions to, say,

√
q parallel

steps. This may be a more promising use of idle cores than running additional
copies of the solver as this is likely to have a more coherent memory footprint
across cores and thus be more amenable to better cache performance.

As the total number of compute cores grows, the communication cost must
eventually become dominant. It, therefore, remains important to consider more
sophisticated knowledge sharing schemes [2] or more parallelizable proofs [19],
both of which are promising research directions orthogonal to our findings. Any
improvements along these lines will affect our approach positively as well and
help it scale to more compute cores.



16 Ashish Sabharwal and Horst Samulowitz

Bibliography

[1] M. Aigner, A. Biere, C. M. Kirsch, A. Niemetz, and M. Preiner. Analysis of
portfolio-style parallel SAT solving on current multi-core architectures. In POS-
2013: Intl. Workshop on Pragmatics of SAT, Helsinki, Finland, 2013.

[2] G. Audemard, B. Hoessen, S. Jabbour, J.-M. Lagniez, and C. Piette. Revisiting
clause exchange in parallel sat solving. In SAT, pp. 200–213, Trento, Italy, 2012.

[3] G. Audemard and L. Simon. Predicting learnt clauses quality in modern SAT
solvers. In 21st IJCAI, pp. 399–404, Pasadena, CA, July 2009.

[4] A. Balint, A. Belov, M. Heule, and M. Järvisalo. SAT competition, 2013.
[5] M. Bellare, O. Goldreich, and E. Petrank. Uniform generation of NP-witnesses

using an NP-oracle. Information and Computation, 163(2):510–526, 2000.
[6] A. Biere. Lingeling, Plingeling and Treengeling entering the SAT Competition

2013. In Proc. of SAT Competition 2013, vol. B-2013-1 of Dept. of Computer
Science Series of Publications B, Univ. of Helsinki, pp. 51–52, 2013.

[7] B. Bloom, D. Grove, B. Herta, A. Sabharwal, H. Samulowitz, and V. A. Saraswat.
SatX10: A scalable plug&play parallel SAT framework - (tool presentation). In
SAT, pp. 463–468, 2012.

[8] L. Bordeaux, Y. Hamadi, and H. Samulowitz. Experiments with massively parallel
constraint solving. In 21st IJCAI, pp. 443–448, 2009.

[9] S. Chakraborty, K. Meel, and M. Vardi. A scalable and nearly uniform generator
of SAT witnesses. In 25th CAV, pp. 608–623, July 2013.

[10] G. Chu, C. Schulte, and P. J. Stuckey. Confidence-based work stealing in parallel
constraint programming. In 15th CP, pp. 226–241, May 2009.

[11] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Taming the curse of dimen-
sionality: Discrete integration by hashing and optimization. In 30th ICML, pp.
334–342, June 2013.

[12] S. Ermon, C. Gomes, A. Sabharwal, and B. Selman. Low-density parity constraints
for hashing-based discrete integration. In 31st ICML, 2014.

[13] M. Fischetti, M. Monaci, and D. Salvagnin. Self-splitting of workload in parallel
computation, May 2014.

[14] C. P. Gomes, A. Sabharwal, and B. Selman. Model counting: A new strategy for
obtaining good bounds. In 21st AAAI, pp. 54–61, Boston, MA, July 2006.

[15] Y. Hamadi and C. M. Wintersteiger. Seven challenges in parallel sat solving. In
26th AAAI, 2012.

[16] W. D. Harvey and M. L. Ginsberg. Limited discrepancy search. In 14th IJCAI,
pp. 607–615, Montreal, Canada, Aug. 1995.

[17] M. Heule, O. Kullmann, S. Wieringa, and A. Biere. Cube and conquer: Guiding
cdcl sat solvers by lookaheads. In Haifa Verification Conference, pp. 50–65, 2011.

[18] IBM ILOG. IBM ILOG CPLEX Optimization Studio 12.6, 2013.
[19] G. Katsirelos, A. Sabharwal, H. Samulowitz, and L. Simon. Resolution and par-

allelizability: Barriers to the efficient parallelization of sat solvers. In 27th AAAI,
2013.

[20] S. Kumar, A. R. Mamidala, D. Faraj, B. Smith, M. Blocksome, B. Cernohous,
D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen, and B. Steinmacher-
Burrow. PAMI: A parallel active message interface for the Blue Gene/Q supercom-
puter. In IPDPS-2012: 26th IEEE International Parallel & Distributed Processing
Symposium, pp. 763–773, 2012.

[21] L. Michel, A. See, and P. V. Hentenryck. Transparent parallelization of constraint
programming. INFORMS Journal on Computing, 21(3):363–382, 2009.



Insights into Parallelism with Intensive Knowledge Sharing 17

[22] T. Moisan, J. Gaudreault, and C.-G. Quimper. Parallel discrepancy-based search.
In 19th CP, vol. 8124 of LNCS, pp. 30–46, Uppsala, Sweden, Sept. 2013.

[23] T. Moisan, C.-G. Quimper, and J. Gaudreault. Parallel depth-bounded discrep-
ancy search. In 11th CPAIOR, vol. 8451 of LNCS, Cork, Ireland, May 2014.

[24] S. M. Plaza, I. L. Markov, and V. Bertacco. Low-latency sat solving on multi-
core processors with priority scheduling and xor partitioning. In International
Workshop on Logic Synthesis (IWLS), 2008.

[25] J.-C. Régin, M. Rezgui, and A. Malapert. Embarrassingly parallel search. In 19th
CP, vol. 8124 of LNCS, pp. 596–610, 2013.

[26] C. C. Rolf and K. Kuchcinski. Load-balancing methods for parallel and distributed
constraint solving. In IEEE Conf. on Cluster Computing, pp. 304–309, Sept. 2008.

[27] Y. Shinano, T. Achterberg, T. Berthold, S. Heinz, and T. Koch. ParaSCIP – a
parallel extension of SCIP. In Competence in High Performance Computing 2010,
pp. 135–148. Springer, Feb. 2012.

[28] P. J. Stuckey. Lazy clause generation: Combining the power of SAT and CP (and
MIP?) solving. In 7th CPAIOR, pp. 5–9, 2010.

[29] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions.
Theoretical Comput. Sci., 47(3):85–93, 1986.

[30] P. van der Tak, M. Heule, and A. Biere. Concurrent cube-and-conquer - (poster
presentation). In SAT, pp. 475–476, 2012.

[31] H. Zhang, M. P. Bonacina, and J. Hsiang. PSATO: a distributed propositional
prover and its application to quasigroup problems. J. Symb. Comput., 21(4):
543–560, 1996.

[32] L. Zhang and S. Malik. Cache performance of SAT solvers: a case study for efficient
implementation of algorithms. In 6th SAT, pp. 287–298, Santa Margherita Ligure,
Italy, May 2003.


