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Abstract

Graphical games capture some of the key aspects relevant to
the study and design of multi-agent systems. It is often of
interest to find the conditions under which a game is stable,
i.e., the players have reached a consensus on their actions. In
this paper, we characterize how different topologies of the in-
teraction network affect the probability of existence of a pure
Nash equilibrium in a graphical game with random payoffs.
We show that for tree topologies with unbounded diameter
the probability of a pure Nash equilibrium vanishes as the
number of players grows large. On the positive side, we de-
fine several families of graphs for which the probability of
a pure Nash equilibrium is at least 1− 1/e even as the num-
ber of players goes to infinity. We also empirically show that
adding a small number of connection “shortcuts” can increase
the probability of pure Nash.

Introduction
In recent years, game theory has moved to the forefront of
a number of disciplines: in economics, game theory is used
to model complex problems of strategic interaction and con-
frontation, as found in markets and auctions; in computer
science, game theory provides much of the foundation for
the design of distributed algorithms and network protocols;
in artificial intelligence, game-theoretic models effectively
capture key aspects relevant to the study and design of multi-
agent systems.

The notion of stability or equilibrium among players is
central in game-theoretic settings. While several notions of
equilibrium have been proposed, Nash’s concept of equilib-
rium (Nash 1951) in a non-cooperative setting is arguably
the most important and widely used solution concept in
game theory. A Nash equilibrium is a profile of strategies in
which each player has no incentive to deviate from his strat-
egy, given the other players’ strategies. Nash proved that
every game has a mixed or randomized Nash equilibrium in
which a player’s strategy is captured by a probability distri-
bution over his actions. On the other hand, when each player
has to choose a pure strategy, i.e., a single action instead of a
randomized mix of actions, a Nash equilibrium is not guar-
anteed to exist. In this paper, we focus on the study of the
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conditions under which pure Nash equilibria (PNEs) exist
for graphical games with random payoffs.

Graphical games were proposed by Kearns, Littman, &
Singh (2001) as a game-theoretic model for studying large-
scale networks of agents with limited interaction. In a graph-
ical game, nodes represent players and undirected edges rep-
resent interactions between them, thereby capturing the lo-
cality of interactions among players. This is a departure
from the standard game theoretic models where each agent
potentially interacts with all other agents. Graphical games
naturally occur in markets, the Internet, and numerous set-
tings with non-trivial network topologies. The graph can
capture many types of interactions. For example, the nodes
can represent individuals with edges indicating who knows
whom, or different countries with edges representing trade
agreements, or different species with edges representing bi-
ological interactions. For games with sparsely connected
graphs, the graphical game representation gives an exponen-
tial space savings compared to the standard game represen-
tation as a matrix.

While a mixed Nash equilibrium always exists, deciding
whether a pure Nash equilibrium exists is NP-complete for
graphical games, even when each player interacts with at
most 3 other players (Gottlob, Greco, & Scarcello 2003).
Nevertheless, there are several reasons why pure Nash equi-
libria are more desirable than mixed Nash equilibria. For
example, mixed strategies may be too complicated to imple-
ment in practice, which has been pointed out in the context
of bounded rationality. Additionally, when playing mixed
strategies (even if they lead to an equilibrium in expecta-
tion), the worst possible outcome can have a much lower
payoff than the expected payoff. Consequently, players may
want to avoid playing a mixed strategy in games with high
stakes or where specific guarantees are needed, e.g., when
the games concern critical operations or when the players
are accountable for the final outcome, such as to their su-
periors. In economic contexts, Vega-Redondo (2003) points
out that one seldom observes agents resorting to stochastic
mechanisms: decision rules used by economic agents may
be quite complex but should usually be conceived as deter-
ministic. Yet another reason to study PNEs is that when
using best-response learning dynamics to discover optimal
strategies, convergence occurs only if there exists a PNE
(Vega-Redondo 2003).



There have been several studies related to PNEs. For
example, Daskalakis & Papadimitriou (2006) recently ana-
lyzed the algorithmic complexity of finding PNEs. Galeotti
et al. (2006) have characterized the structure of PNEs in
so-called network games. In this work, we explore the exis-
tence of PNEs as a probabilistic property of random-payoff
graphical games, in contrast with the algorithmic decision
problem or a structural analysis.

Known formal results on the existence of PNEs are for
random normal form (or standard matrix) games, where
each player’s payoff, chosen uniformly at random, is a func-
tion of the selection of actions for all players. Normal
form games are equivalent to graphical games on complete
(clique) graphs. The probability of existence of a PNE
for a normal form game with random payoffs converges to
1 − 1/e ≈ 0.63 as the number of players grows (Rinott &
Scarsini 2000). A key question concerning PNEs for graph-
ical games is, do such equilibria exist, given the topology of
the underlying interaction graph? In this paper, we study
this question in detail with respect to graphical games with
random payoffs.

Preview of Results. We show that for graphical games, dif-
ferent interaction graph topologies lead to radically different
behavior: depending on the topology, the probability of hav-
ing a PNE remains quite high or vanishes completely as the
number of players grows. We note that the probability here
is with respect to random payoffs; the topologies themselves
are structured (except, of course, when we consider random
interaction graphs).

Figure 1: Topologies: path, tree, star, m-star, augmented
complete bipartite, and complete bipartite.

Figure 1 depicts the different graph topologies we con-
sider in our theoretical analysis. Our results are with respect
to games where each player has 2 actions, unless otherwise
specified. Our most basic topology consists of a linear chain
or “path” of interactions between players. We prove that
as the number of players grows, the probability of having a
PNE converges to 0. We then extend our topology to tree
structures, and again formally show that the probability of
having a PNE converges to zero as the number of players
grows. Interestingly, our empirical data reveals that the con-
vergence to zero is much slower on trees than on the linear
chain with the same number of nodes. In fact, the higher the
branching factor of the tree, the slower the rate of conver-
gence. For example, for a 50 player linear chain, the proba-
bility of having a PNE is around 0.04, while for a tree with a

branching factor of 5 and 50 players, this probability is 0.25.
Intuitively, while long chains of interactions prevent emer-
gence of PNEs, short paths of interactions between players
increases this probability. For instance, when we consider
the so-called star topology — one central player interacting
with all other players independently — we can show that the
probability of having a PNE converges to 0.75 as the num-
ber of players grows. Table summarizes our key theoretical
findings.

Topology Prob. of Pure Nash
star 0.75

2-star 0.683
augmented bipartite 1− (1− 1

2m )2m

bipartite 1− 1/e ≈ 0.632
matrix 1− 1/e ≈ 0.632

tree 0
path 0

Table 1: Asymptotic probability of having a PNE in 2-action
games with various interaction topologies.

We define a family of graphs that generalize the star graph
by allowing the center of a graph of n nodes to have m nodes.
The “outer” nodes interact (only) with each of the m center
nodes, while the center nodes themselves are connected arbi-
trarily (see Figure 1). We refer to this topology as an m-star,
or equivalently an augmented bipartite graph. We show that
for such graphs and with k possible actions per player, the
probability of having a PNE converges to 1− (1−1/km)km

as n → ∞ whenever m is such that n/3−m → ∞ (i.e., the
center of the graph is small enough). For 2-action games
(k = 2), the lower bound for the probability of having a PNE
given this topology lies between 1− 1/e ≈ 0.63 and 0.75.

Another topology we consider is that of complete bipar-
tite graphs. Such interaction graphs occur naturally in sev-
eral settings such as when modeling the interactions between
buyers and sellers or between bidders and auctioneers. We
show that as the number of players grows, the probability
of having a PNE converges to 1− 1/e ≈ 0.63. (This is the
same value as for standard matrix games, but for a richer
underlying topology.)

Finally, we study empirically what happens when we
morph a highly regular graph into a random graph, through
a sequence of random re-wirings. This process was in-
spired by the work on Small World Graphs (Watts & Stro-
gatz 1998). Our experiments show that the probability of
having a PNE increases significantly with more rewiring.
For a large number of players, the regular graph game be-
haves similarly to the chain and the tree graph games in that
the probability of having a PNE goes to zero; however, with
only a few random re-wirings, the probability of a PNE dra-
matically increases. A similar increasing probability phe-
nomenon is observed as more and more edges are added to
purely random interaction graphs.

In summary, our results demonstrate that the topology of
player interactions can greatly affect the probability of ex-
istence of a pure Nash equilibrium. We show that long lin-
ear chains of interactions dramatically reduce the chance of



having a PNE. One can reverse this effect by adding a small
number of random interactions. Such new interactions also
implicitly shorten the longest chains in the network. In-
terestingly, and perhaps contrary to one’s intuitions, having
more interactions between players can actually increase the
probability of having a PNE.

Overall, our analysis suggests that one can exploit the
topology of the interaction graph when designing networks
of interacting agents or components. Ideally, one would
choose a topology that maximizes the probability of hav-
ing a pure Nash equilibrium, which would be beneficial to
all players. Our results provide insights for identifying such
preferred topologies.

Preliminaries
We begin by formally defining games, strategy profiles,
Nash equilibrium, and graphical games. We will then dis-
cuss random-payoff games and some topologies of interest.
Definition 1. A game is a triple Γ =
(P,

{

Ap | p ∈ P
}

,
{

up | p ∈ P
}

) where P is a set of
players, Ap is the set of possible actions for player p, and
up : ∏i∈P Ai → R is the payoff function of p.

When |P|= n, Γ is referred to as an n-player game. When
each |Ap| is finite, we have a finite game. Throughout this
paper, we will work with n-player finite games.

For W ⊆ P, a pure (partial) strategy profile, sW , for Γ is
an element of the set ∏p∈W Ap, i.e., it is a |W |-tuple that
specifies one action for each player in W . For succinctness,
we will refer to this simply as a strategy profile for W , and
when W = P, denote it by s. With slight abuse of notation,
we will denote by sp the action specified for player p by
the strategy profile s. Given a (partial) profile sW , we will
use (sW−{p},ap) to denote the profile where all players but
p have the same action as in sW and p has action ap.

A pure Nash equilibrium is a strategy profile where each
player has no incentive to unilaterally deviate and change his
action in order to achieve a better payoff, given the actions
chosen by the other players. Formally,
Definition 2. A Pure Nash equilibrium (PNE) for Γ =
(P,

{

Ap
}

,
{

up
}

) is a strategy profile s for Γ such that ∀p ∈
P,∀a ∈ Ap : up(s) ≥ up(sP−{p},a).

Graphical games capture the notion that in many scenar-
ios, a player’s payoff may only depend on the choices of
a subset of the other players (his “neighbors”). The inter-
actions between players are represented by an undirected
graph (i.e., we work with symmetric games) where nodes
represent players and edges represent mutual dependencies
between players. We will use nodes and players inter-
changeably. For a graphical game, up, the payoff of p, de-
pends only on the actions of players that are adjacent to p in
the underlying graph, denoted by Nbr(p).
Definition 3. A graphical game is a triple Γ = (G =
(V,E),

{

Ap | p ∈V
}

,
{

up | p ∈V
}

) where G is a (con-
nected) undirected graph, V represents the set of players,
Ap is the set of available actions for player p, and up :
∏q∈{p}∪Nbr(p) Aq → R is the payoff function of p.

Our focus will be on random-payoff graphical games, that
is, graphical games where payoff functions are chosen at
random. Specifically, let Γ be an n-player graphical game
defined over G = (V,E); |V | = n. For any player p, the
payoff function up can be thought of as a payoff table Up
with one payoff value for each tuple of possible actions of
{p}∪Nbr(p). Our random distribution on games over G is
defined as follows: for all payoff tables Up in Γ, choose each
payoff value in Up uniformly and independently at random
from the interval [0,1]. (We will shortly replace this uniform
random distribution over payoffs with an essentially equiv-
alent but simpler discrete random distribution over “best re-
sponse tables.”)

Interestingly, in order to determine whether a strategy pro-
file s is a PNE of a graphical game Γ, we only need to con-
sider whether or not for each player p, the action sp is p’s
best response to the actions sNbr(p) of his neighbors; it does
not matter what the exact payoff values are. This motivates
the following definition.
Definition 4. Let Γ be a graphical game. A best response
action of p w.r.t. a strategy profile s, denoted BRp(sNbr(p)), is
an action that maximizes p’s payoff with respect to sNbr(p).

When finitely many payoffs are drawn randomly from
continuous distributions (e.g., uniformly from [0,1]), they
are all distinct with probability 1. Therefore, every player
nearly always has a unique best response action for each tu-
ple of actions of the other players. Throughout this paper,
we will assume this uniqueness and think in terms of best
response tables Tp derived naturally from payoff tables Up:
for each strategy profile sNbr(p), Tp specifies the unique best
response action of p, BRp(sNbr(p)) (which in turn is defined
by Up).

The uniqueness of best response actions simplifies our
random distribution on games Γ over a graph G to the fol-
lowing: for all best response tables Tp in Γ, choose each
best response action in Tp uniformly and independently at
random from Ap. We will focus on games where |Ap| = k
for each p; k will be 2 unless otherwise stated. In this case,
there are k|Nbr(p)| entries or “rows” in Tp for each of which
the best response action of p is specified, and the random
distribution can be thought of as each Tp being chosen uni-
formly and independently at random from the set of kk|Nbr(p)|

possible best response tables.
Example 1. Consider a graphical game on a “path”
graph consisting of three players {p,q,r} and edges
{{p,q} ,{q,r}}, with action sets Ap = Aq = Ar = {0,1}.
The payoff function up of p is defined over Aq ×Ap, and the
payoff values are selected uniformly at random from [0,1].
Figure 2 gives an example of the payoff table Up, and the
best response table Tp determined by these payoffs and de-
fined over Aq. Similarly, since Nbr(q) = {p,r}, the best
response table of q is defined over Ap ×Ar. Finally, since
Nbr(r) = {q}, the best response table of r is defined over
Aq. Figure 2 gives examples of the corresponding best re-
sponse tables Tq and Tr.

Each best response table can be viewed as a con-
straint that must be satisfied by a strategy profile s



q p up
0 0 0.3
0 1 0.5
1 0 0.7
1 1 0.2

q BRp
0 1
1 0

p r BRq
0 0 0
0 1 1
1 0 1
1 1 0

q BRr
0 0
1 0

Figure 2: Best response function of p, and best response
tables of p,q, and r for the path graph p — q — r

for it to be a PNE. For example, Tp disallows pro-
files (000),(001),(110),(111) for (p,q,r) and allows
(010),(011),(100),(101). Similarly, Tp and Tq together
only allow profiles (011),(101) as PNEs, which in partic-
ular implies that r must take action 1. However, r’s best
response is not 1 when q plays either 0 or 1, and hence there
is no PNE in this game.

The key question we are interested in is the following: For
an interaction graph G and possible player actions

{

Ap
}

,
what is the probability that a graphical game Γ, defined on G
and

{

Ap
}

and with best response tables chosen uniformly at
random, has a PNE? When the underlying graph is implicit,
we will often use the phrase “the probability of a PNE” to
represent this probability. We will study this problem for
various families of graphs, i.e., for different graph topolo-
gies parameterized by the size of the graph. For each such
topology, we will explore how the probability of a PNE be-
haves as the size of the graph grows.

We briefly describe the key topologies of interest (refer
to Figure 1). The simplest of these is the path graph Pn,
which is a connected graph with n − 2 vertices of degree
2 and two “end” vertices of degree 1. A tree graph is an
acyclic connected graph, without any degree restrictions. A
star graph Sn is a tree of n nodes with one “center” node
and n− 1 “outer” nodes. A clique graph Kn has n nodes
with each pair of nodes connected. For two disjoint sets of
vertices X and Y , the complete bipartite graph K(X ,Y ) is the
graph with nodes X ∪Y and edges {(x,y) | x ∈ X ,y ∈ Y}.

We will also consider an extension of complete bipartite
graphs: an augmented complete bipartite graph K̃(X ,Y,EX )
is a graph where the set of vertices is X ∪Y and the set of
edges is EX ∪{(x,y) | x ∈ X ,y ∈ Y}, where EX is an arbitrary
set of edges within X . This can alternatively be thought of
as an extended star graph with X as the set of arbitrarily
connected center vertices and Y as the set of outer vertices,
each connected to all of the center vertices.

The diameter of a graph will be a parameter of interest to
us. It is defined as the maximum shortest distance over all
pairs of vertices. In the case of tree graphs, the diameter is
simply the length of the longest path in the tree.

Theoretical Results
In this section, we derive formal results about the proba-
bility of a PNE in n-player random-payoff graphical games
on sequences of graphs Gn. When the considered sequence
of graphs has a tree topology with unbounded diameter and
two actions per player, we will show that this probability
converges to 0. On the other hand, when the sequence of

graphs has a (augmented) complete bipartite topology (see
Preliminaries), we will show that this probability converges
to a non-zero quantity, sometimes as high as 0.75.

We begin with the result for tree topologies. For this, we
first prove that the probability of a PNE in a random game on
a path converges to 0 as n → ∞. We then show that adding a
single vertex with one edge connecting this vertex to the ex-
isting graph cannot increase the probability of a PNE. Com-
bining these two building blocks and viewing a tree as being
constructed by sequentially adding a set of vertices to a path
representing the tree’s diameter, we will have the desired
result for unbounded diameter trees. We first give a small
example to illustrate the case-based reasoning technique.
Example 2. Consider the 2-action 2-player random payoff
game Γ on the path graph P2. We will use 0p,1p to denote the
actions of player p∈ {1,2}. Let us denote by A the event that
the best response of player 1 to both actions of player 2 is the
same, i.e. BR1(02) = BR1(12). In a random-payoff game,
the probability of A is 1/2 because of the independence of
the best responses. In the case when event A happens, let
x1 = BR1(02) = BR1(12),x1 ∈ {01,11}. Then the profile
(x1,BR2(x1)) is necessarily a PNE since both players are
in their best response state, that is, Pr[Γ has a PNE |A] = 1.
On the other hand, in the case that event A does not hap-
pen, i.e., when BR1(02) 6= BR1(12), let x1 = BR1(02) and
x1 = BR1(12). There are two candidate profiles for having a
PNE: (x102) and (x112). Given A, the probability that (x102)
is a PNE is equal to the probability that BR2(x1) = 02 which
is 1/2 . Similarly for (x112). Since BR2(x1) and BR2(x1)
are independent events, we obtain that Pr[Γ has a PNE |A] =
3/4. Finally, the overall probability of Γ having a PNE is
1
2 ×1+ 1

2 ×
3
4 = 7

8 .
Lemma 1 (Path). Let Γn be a 2-action random-payoff game
on the path graph Pn. Then Pr[Γn has a PNE] ≤

( 63
64

)n−1.

Proof Sketch. Fix the sets of player actions to {0,1}. Let
Prn denote the probability that Γn does not have a PNE.
Let (v1,v2,v3, . . . ,vn) be the nodes of Pn, and consider the
end player v1. Since the choice of actions of player v1 de-
pends only on player v2, there are four possible best response
tables Tv1 which occur with equal probability of 1/4: for
i, j ∈ {0,1}, T i j

v1 corresponds to the best response of v1 being
i when v2 plays 0 and j when v2 plays 1. We first consider
T 00

v1 . Denote the rows in v2’s table where v1 plays 0 as Tv20,
and where v1 plays 1 as Tv21. Both Tv20 and Tv21 are equiva-
lent to a best response table for v2 with respect to his other
neighbor v3. Since the table T 00

v1 of v1 precludes any PNE
where v1 plays 1, we need only consider the probability that
there is no PNE when v1 plays 0. Given T 00

v1 , the probability
of choosing {Tvi}i=2..n such that there is no PNE is equal to
the probability of choosing {Tvi}i=3..n ∪Tv20 such that there
is no PNE. Hence, conditioned on T 00

v1 , the probability of not
having a PNE in a n-path game is equal to the probability of
not having a PNE in an (n−1)-path game, Prn−1. The same
holds for T 11

v1 .
When the table of v1 is either T 01

v1 or T 10
v1 , v1 responds

with different actions to the play of v2. In particular, T 01
v1



only allows profiles where v1 and v2 play the same ac-
tion. Given T 01

v1 , the probability of not having a PNE
is equal to the probability of choosing {Ti}i=2..n such
that any profile (0,0,s3, . . . ,sn) or (1,1,s3, . . . ,sn) is dis-
allowed. Let us denote this probability by Prn−1(00,11).
The case for T 10

v1 is symmetric. Considering the four pos-
sible tables T i j

v1 , we have the recursive expression Prn =
1
4 Prn−1 + 1

4 Prn−1 + 1
4 Prn−1(00,11)+ 1

4 Prn−1(00,11). Now,
we need to expand on Prn−1(00,11). Due to space limita-
tions, the rest of the proof is omitted. We can derive a set
of six mutually recursive expressions that explicitly capture
the probability of not having a PNE in Γn. Using these ex-
pressions, we can inductively prove that Prn ≤

( 63
64

)n−1.

For a graph G = (V,E), we use the term G-game to denote
a random-payoff graphical game on G with uniform distri-
bution over best response tables as described earlier. Let Γ
be such a randomly chosen G-game. For a vertex u ∈ V ,
let U0 and U1 denote the events that a Γ has a PNE where
u plays 0 and 1, respectively. U0 and U1 will represent the
complements of these two events, respectively. Note that the
probability that Γ has a PNE equals, by definition, the prob-
ability that at least one of the events U0 and U1 happens.

To analyze the probability of a PNE in Γ, we consider the
set of best response tables TW of all players other than u;
W = V \{u}. Observe that given the choice of TW , the prob-
ability that Γ has a PNE depends only on the best response
table of u, Tu. Our proofs will, in general, do a case-based
analysis exploiting this fact. We begin with a general prop-
erty of random-payoff graphical games which will be used
in proving Lemma 3.
Lemma 2. Let Γ be a random-payoff graphical game over
G = (W ∪{u} ,E) and TW be best response tables. Then

Pr[U0 ∩U1 | TW ] ≤ Pr[U0 | TW ] ·Pr[U1 | TW ].

Proof. It is easy to see that if either of Pr[U0 | TW ] and Pr[U1 |
TW ] is 0 or 1, the claimed inequality holds. Assume therefore
these probabilities are strictly between 0 and 1. In particular,
this means that Pr[U0 | TW ] > 0 and Pr[U1 | TW ] > 0, which
we will exploit later. For now, we can rewrite what we need:

Pr[U0 | TW ] ≥
Pr[U0 ∩U1 | TW ]

Pr[U1 | TW ]
= Pr[U0 |U1 ∩TW ]

This is equivalent to Pr[U0 | TW ] ≤ Pr[U0 | U1 ∩ TW ], i.e.,
given TW , the probability of G having a PNE where u plays
0 should be not decrease if we condition on G not having
a PNE where u plays 1. Intuitively, this holds because not
having a PNE where u plays 1 gives u more “freedom” to
play 0 more often in his best response tables. We now prove
this formally.

Consider the set S′ of strategy profiles allowed by TW , i.e.,
strategy profiles s where each of the players in W plays his
best response action given the actions of the other players in
s. There exists a PNE in Γ given TW iff at least one s ∈ S′
is allowed by the best response table Tu of u. Since the re-
sponses of u only depend on the actions of the players in
Nbr(u), we will focus on the profiles over Nbr(u)∪{u} al-
lowed by TW . Let this set of profiles be S. When projected

over Nbr(u), S is partitioned into three disjoint sets of pro-
files over Nbr(u): those for which u can only play 0 to be ac-
ceptable by TW , those for which u can only play 1, and those
for which u can play either 0 or 1. Let us denote these by
S0,S1, and S01, respectively. Note that the profiles in S0,S1,
and S01 correspond to various rows of Tu. Recall that we
are assuming Pr[U0 | TW ] > 0 and Pr[U1 | TW ] > 0, so that
|S0 ∪S01| > 0 and |S1 ∪S01| > 0.

Let {Bk} denote the set of events that Tu assigns some
specific best responses “k” to the rows S1 ∪ S01. There
are 2|S1∪S01| such events that are disjoint and equally likely.
Given such an event Bi with the additional property that none
of the S01 rows of Tu have 0 as the best response for u, the
probability that Tu does not allow a PNE with u playing 0
equals the fraction of the possible tables where the best re-
sponse of u to each S0 row is 1, which is exactly 2−|S0|.
It follows that Pr[U0 | Bi ∩ TW ] =

(

1−2−|S0|
)

for such an
event Bi. On the other hand, given an event B j with the
additional property that some S01 row of Tu prescribes 0 as
the best response for u, Pr[U0 | B j ∩ TW ] = 1. With these
two disjoint kinds of events Bi and B j together, we have
that Pr[U0 | TW ] = ∑2|S1∪S01 |

k=1 Pr[U0 | Bk ∩ TW ] · Pr[Bk | TW ] =

2−|S1∪S01| ∑2|S1∪S01 |
k=1 Pr[U0 | Bk ∩TW ] ≤ maxk Pr[U0 | Bk ∩TW ].

On the other hand, the event U1 is equivalent to choosing
Tu such that the best response to each row in S1 ∪ S01 is 0.
There is only one such event B′. Notice that when |S01| =
0, Pr[U0 | B′ ∩ TW ] =

(

1−2−|S0|
)

= maxk Pr[U0 | Bk ∩ TW ],
and also when |S01|> 0, Pr[U0 | B′∩TW ] = 1 = maxk Pr[U0 |
Bk ∩TW ]. Hence, Pr[U0 |U1∩TW ] = maxk Pr[U0 | Bk ∩TW ]≥
Pr[U0 | TW ], which is what we needed.

We now show that adding a degree 1 vertex v to a graph
G cannot increase the probability of having a PNE.
Lemma 3. Let G = (V,E) with u ∈ V and v 6∈ V , and G′ =
(V ∪ {v} , E ∪ {(v,u)}). Then Pr[a G′-game has a PNE] ≤
Pr[a G-game has a PNE].

Proof Sketch. Let V = {v1,v2, . . . ,vn}. Without loss of gen-
erality, let u = vn and W = {v1, . . . ,vn−1}. Games over G′

are defined by the best response tables of v, u, and the play-
ers in W . Since u is the only neighbor of v, the best response
table for v has 2 entries specifying the best response actions
of v to the play of u. Let the neighbors of u in G be Nu and
let |Nu| = du. In G, the best response table of u is defined
over Nu and has 2du rows. In G′, u’s best response table is
defined over Nu ∪{v} and has 2du+1 rows. The tables for the
rest of the players remain unaffected. To prove the lemma,
we will show that the probability of not having a PNE in G′

is no less than the probability of not having a PNE in G. Re-
call that the probability of not having a PNE in a G-game
is Pr[U0 ∩U1], where U0 and U1 denote events that there is
a PNE where u plays 0 and 1, respectively. Similarly, we
define U ′

0 and U ′
1 for a G′-game and consider Pr[U ′

0 ∩U ′
1].

We will show that for every instantiation of the tables TW
of the players in W , the probability that G′ has no PNE is
no less than the probability that G has no PNE. Given TW ,
there are 4 possible instantiations of the table Tv of v, each



of which occurs with probability 1/4. We will show that in
each of the four disjoint cases and conditioned on Tv and TW ,
the probability that G′ has no PNE is no less than the proba-
bility that G has no PNE. This will prove the lemma because
the probability of G′ not having a PNE will be “pointwise”
no less than the probability of G not having a PNE, i.e., the
desired inequality will hold for every possible instantiation
of Tv and TW .

To this end, observe that given Tv and TW , the probability
of not having a PNE is simply equal to the fraction of the
22du+1 possible table instantiations for u that do not allow
for a PNE (we can talk of fractions of tables because the
distribution is uniform). We can compute this probability by
considering the four possible tables of v and analyzing the
events U ′

0 and U ′
1 in relation to U0 and U1, using Lemma 2.

We omit the fairly involved details for lack of space.

Theorem 1 (Trees). Let Γn be a 2-action random-payoff
game on a tree graph Tn such that diameter(Tn) grows with-
out bounds with n. Then Pr[Γn has a PNE ] → 0 as n → ∞.

Proof. One can think of any tree graph T as a sequence of
vertex additions starting with a path graph P with length(P)
= diameter(T ). Lemma 3 says that Pr[T has PNE] ≤
Pr[P has PNE], and from Lemma 1 we know that the latter
goes to zero as length(P) goes to infinity. We therefore have
the desired result whenever diameter(T ) is unbounded.

Notice that such tree topologies include as special cases
trees with a constant branching factor and also graphs like a
star attached to a long path. On the other hand, we show that
other topologies are conducive to the existence of a PNE,
where the probability of a PNE is bounded from below by a
non-zero constant even as the number of players grows.
Theorem 2 (Augmented Complete Bipartite). Let Γn be
a random-payoff game on an augmented complete bipartite
graph Gn = K̃(Xn,Yn,EXn) such that |Xn ∪Yn| = n, |Xn| = m,
n/3−m → ∞ as n → ∞, and each player in Xn has k actions.
Then Pr[Γn has a PNE] →

(

1−
(

1− 1
km

)km)

as n → ∞.

Proof. We will refer to the players in Xn and Yn as the cen-
ter and leaf players, respectively. The center players ad-
mit km different profiles; let c be one such profile. In re-
sponse to c, each leaf node has a unique best response ac-
tion which only depends on c. These best responses to-
gether form a best response strategy profile sc

Yn . The profiles
S =

{

(sc
Yn ,c) | c ∈ ∏p∈Xn Ap

}

are the only potential global
strategy profiles that could be PNEs since in any other pro-
file at least one of the leaf players will have an incentive
to deviate. It follows that Γn has no PNE iff each potential
profile in S is rejected by the center players.

Let c,c′ be two profiles of the center players. Let us as-
sume for now that the corresponding profiles sc

Yn and sc′
Yn of

the leaf players are distinct. (We will soon prove that this
happens with probability approaching 1.) Now, (sc

Yn ,c) is a
PNE iff ∀x ∈ Xn,BRx(sc

Yn ,c) = cx, which happens with prob-
ability exactly k−m. Further, since sc

Yn 6= sc′
Yn , the two events

that (sc
Yn ,c) is a PNE and (sc′

Yn ,c
′) is a PNE are independent.

Extending this argument to all profiles in S and assuming
that all sc

Yn are distinct, the probability that the center players
reject all profiles in S is (1− k−m)

km
. Hence the probability

that at least one of these profiles is a PNE given that the sci
Y ’s

are all distinct is 1−
(

1− 1
km

)km
, as claimed.

We now justify the assumption above by proving that with
probability approaching 1, all sc

Yn are distinct for the km cen-
ter profiles c of Xn. Observe that for each of the km center
profiles, sc

Yn is chosen from kn−m possible profiles indepen-
dently and uniformly at random (since the best response ta-
ble of the leaf players are independent and chosen uniformly
at random ). Therefore, if kn−m is sufficiently larger than km,
all these profiles will be distinct. The following calculation
shows that it suffices to have n/3−m be ω(1) in n.

For i ∈ {1, . . . ,km}, the probability that the ith best re-
sponse is different from the previous i − 1 responses is
kn−m−(i−1)

kn−m . Hence the probability that all km best response
choices are distinct is:

(

kn−m

kn−m

)(

kn−m −1
kn−m

)

. . .

(

kn−m − (km −1)

kn−m

)

>
(kn−m − km)km

(kn−m)km =

(

1− km

kn−m

)km

> e−
2km ·km
kn−m = e−

2
kn−3m

This converges to 1 as n−3m → ∞.

Notice that the restriction on the size of the set Xn of
center players is quite flexible. E.g., it allows m = cn for
c < 1/3, m = n/3− logn, etc. The probability of a PNE in
this family of graphs is maximized when m = 1, which cor-
responds to the star graph Sn. When the center player has 2
actions, the probability of a PNE is considerably higher than
a random-payoff matrix game.
Corollary 1 (Star). Let Γn be a random-payoff game on the
star graph Sn where the center player has 2 actions. Then
Pr[Γn has a PNE] → 0.75 as n → ∞.

In addition, the proof did not depend in any way on the in-
teractions between the center players. If they are completely
disconnected, than the topology corresponds to a complete
bipartite graph (see Figure 1). However, we can say some-
thing stronger for complete bipartite graphs that is true even
when both X and Y have large sizes. The proof of this next
theorem is based on viewing complete bipartite topologies
as 2-player games with unbounded action sets and using the
result of Powers (1986).
Theorem 3 (Complete Bipartite). Let Γn be a k-action
random-payoff game on a complete bipartite graph Gn =
K(Xn,Yn) where both |Xn| and |Yn| grow without bound as n
grows, Then Pr[Γn has a PNE] → 1− 1/e as n → ∞.

Proof. Given Γn, one can easily construct a 2-player game
Γ′

n with the following three properties: (1) the players of Γn
in Xn correspond to a single player xn of Γ′

n with k|Xn| actions
Axn = ∏p∈Xn Ap; (2) the players in Yn correspond to a player
yn of Γ′

n with k|Yn| actions Ayn = ∏p∈Yn Ap; and (3) Γ′
n has a

PNE if and only if Γn has a PNE.
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Figure 3: Topologies with analytical results

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 10  20  30  40  50  60

Fr
ac

tio
n 

of
 g

am
es

 w
ith

 a
 P

NE

nodes

 

random tree
preferential attachment tree

Figure 4: Random trees vs. preferential attachment trees

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

Fr
ac

tio
n 

of
 g

am
es

 w
ith

 a
 P

NE

Probability of rewiring an edge

 

n=60,k=6
n=80,k=6

n=100,k=6

Figure 5: Small world graphs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10  12  14  16
Pr

ob
ab

ilit
y 

of
 P

NE
s

Average Degree

conn P=10
conn P=20
conn P=30
conn P=40
conn P=60
conn P=80

1-1/e

Figure 6: Connected G(n,m) graphs

Since the best responses of the players in Xn are indepen-
dent of each other (Gn being bipartite), choosing the best
responses for Xn uniformly and independently at random in
Γn corresponds to choosing a best response action for xn uni-
formly and independently at random from Axn in Γ′

n. Sim-
ilarly, for yn. Therefore, considering a game over Gn with
independent uniform-random payoffs is equivalent to con-
sidering a 2-player game with appropriate number of actions
and independent uniform-random payoffs. Moreover, since
both |Xn| and |Yn| grow without bound as n grows, |Axn | and
|Ayn | also go to infinity as n → ∞. Powers (1986) showed
that the probability of a PNE in a random-payoff 2-player
game converges to 1− 1/e whenever the action sets of the
two players grow infinitely large. Resorting to this result
completes the proof.

Empirical Results
For our experiments, we used the GAMUT library (Nudel-
man et al. 2004), which facilitates the generation of graph-
ical game instances with various topologies. The best re-
sponse tables were chosen uniformly at random as discussed
earlier. Each game instance Γ was translated into an equiv-
alent propositional (SAT) formula FΓ with the property that
FΓ was satisfiable if and only if Γ had a PNE. FΓ was created
by having two kinds of clauses, the first set making sure that
every player chooses an action and the second set making

sure that every strategy profile that is not a PNE (because
the action of one of the players is not his best response ac-
tion w.r.t. this strategy profile) is ruled out. We then used
the SAT solver Minisat (Een & Srensson 2005) to check
whether FΓ was satisfiable, thus determining the existence
of a PNE in Γ. In our plots, each data point was obtained by
averaging over 4000 game instances.

In Figure 3, we consider various interaction topologies
and for each of these, plot the fraction of games with a
PNE as a function of the number of players. The proba-
bility of having a PNE converges to zero for tree-like and
path graphs, and to a non-zero value greater than or equal
to (1− 1/e ) for the other topologies. While this is already
expected from our theoretical analysis, these plots are in-
teresting because they provide further finer-grained insight
into the convergence process, for instance, in terms of the
rate of convergence. In particular, we see that the larger the
branching factor of the tree-like topologies, the slower the
convergence to zero.

Intuitively, a higher branching factor leads to relatively
shorter paths between pairs of nodes, thereby increasing
the chance of having a PNE. The figure shows this for
only a few cases, but we have observed the phenomenon
for a variety of tree-like topologies. For example, ran-
dom trees grown with the so-called preferential attachment
model (Albert & Barabasi 2002) have a slower rate of con-



vergence than purely random trees (see Figure 4). A pref-
erential attachment tree can be generated by starting with
a single vertex and adding a new node at a time with one
edge that is connected to an existing node i with probabil-
ity deg(i)/(∏ j deg( j)). Such a model is characterized by a
power-law node degree distribution and therefore it tends to
decrease the path length between nodes by creating links to
highly connected intermediate nodes.

In addition to highly structured topologies we also consid-
ered less structured graph models, such as the random graph
model G(n,m) and the Watts-Strogatz small world model
(Watts & Strogatz 1998). These models capture some of the
characteristics observed in social, biological, and computer
networks. A random graph G(n,m) is a graph with n ver-
tices and m edges, where each edge is selected uniformly at
random from all possible edges without repetition. A Watts-
Strogatz small world graph SWG(n,k, p) is a random graph
with n vertices obtained from a random process that starts
with a ring lattice with k edges per vertex; subsequently each
of the nk/2 edges is rewired to a random vertex with prob-
ability p ∈ [0,1]. Varying the rewiring probability allows
us to interpolate between a highly regular graph and a fully
random graph.

In our experiments with small world graphs, we start with
a highly structured graph, a ring lattice with k = 6 edges
per vertex when the probability of rewiring is p = 0, and
end up with a random graph with 3n edges when p = 1.
Figure 5 plots the results for graphs with 60, 80, and 100
players as a function of the probability of rewiring. This
plot indicates that the rewiring of edges in a highly regular
graph dramatically increases the probability of a PNE. No-
tice that the probability of a PNE increases monotonically
with the increase in rewiring probability, in other words the
random graph over the given number of nodes and edges
maximizes the probability of PNE. The regular graph game
behaves similarly to the chain and the tree graph games in
that the probability of having a PNE goes to zero as the num-
ber of players increases; however, with only a few random
re-wirings, the probability considerably increases. In partic-
ular, it is enough to set p = 0.3 to come reasonably close
to the maximum probability of a PNE, given the number of
nodes and edges. This suggests that the process of creating
short paths between players as we rewire edges increases the
chance of a PNE. A similar phenomenon is observed for ran-
dom graphs generated using the G(n,m) model in which we
create shortcuts between players by increasing the number
of edges in the graph. Again, Figure 6 shows that increas-
ing the number of edges between players quickly increases
the probability of a PNE. In particular, it seems enough to
achieve an average degree of 6 to come reasonably close to
the probability of having a PNE in a regular matrix game.

Conclusion
We studied the impact of interaction topology on the exis-
tence of pure Nash equilibria in graphical games. We iden-
tified a variety of graph structures with diverse asymptotic
behavior. Our results for path and tree-like topologies show
that with long chains of interactions between players, the
probability of a PNE goes to zero as the number of players

grows. One can remedy this situation by creating shortcuts
in the interaction graph. The star-like and bipartite struc-
tures capture interesting real-world settings with many short
interaction paths. We showed that these topologies lead to a
surprisingly high asymptotic probability of pure Nash, gen-
erally higher than for the standard matrix game scenario.
Given the high stability and predictability of (the existence
of) pure Nash equilibria, this work suggests ways of design-
ing multi-agent systems that are quite likely to have such
equilibria.
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