
Approximate Inference for Clusters in Solution Spaces∗

Lukas Kroc and Ashish Sabharwal and Bart Selman
Department of Computer Science

Cornell University, Ithaca NY 14853-7501, U.S.A.
{kroc,sabhar,selman}@cs.cornell.edu

Extended Abstract

This work proposes new approximate (and exact) infer-
ence methods for reasoning about an important and hard-
to-compute property of the solution space of combinatorial
problems, namely clusters of solutions. Given a constraint
satisfaction problem (CSP), we can think of two solutions
as being “connected” if they differ in the value of only one
variable. Clusters of solutions can thus be defined in a nat-
ural manner: two solutions s1 and s2 are in the same cluster
if and only if there is a path of connected solutions from s1
to s2. The main question we seek to address is, given a CSP,
how many solution clusters does it have?

We propose an approximate method that first reformulates
the CSP as a “factor graph” over an extended set of variable
domains, approximates the number of clusters using an ex-
ponential size expression defined over this factor graph, and
then estimates the value of this expression using message
passing techniques, specifically an extension of the belief
propagation algorithm.

Knowledge about the clustering structure of the solution
space of a problem can be a very useful tool in under-
standing and reasoning about the problem domain. For in-
stance, knowing that a solution lies in a large cluster of solu-
tions suggests robustness: if an application demands a small
tweak to the initial solution we provide, it is likely to be easy
to accommodate that tweak and still have a valid solution if
the original solution was part of a big cluster. Similarly,
when an application requires a sample of, say, 10-15 solu-
tions, it is often desirable to provide fairly different 10-15
solutions rather than all solutions that differ only slightly
(e.g., in a handful of variable values out of thousands of
variables). The number of solution clusters captures, in a
sense, how many different kinds of solutions the problem
has. When planning for contingencies, for example, it can
be more useful to know that there are many, very different
kinds of logistic plans or schedules, rather than knowing that
there are several plans all of which could be insignificant
variations of each other.

Yet another motivation for studying solution clusters,

∗Preliminary results from this work, particularly for the graph
coloring problem, appeared at the NIPS-08 conference, Vancouver,
Canada, 2008; a significantly extended version is under preparation
for a journal.
Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

which was in fact our original motivation, comes from the
recent literature on message passing algorithms, specifically
belief propagation (BP) and survey propagation (SP). Mes-
sage passing algorithms such as BP have been very success-
ful in efficiently computing interesting properties of suc-
cinctly represented large, continuous probability spaces. BP
has found a range of applications in, e.g., Bayesian infer-
ence, coding theory (turbo decoding), and image under-
standing. Message passing techniques have found a recent
focus on computing properties of discrete spaces, in par-
ticular, properties of the space of solutions of combinato-
rial problems. For example, marginal probability informa-
tion about the uniform distribution over solutions (or simi-
lar combinatorial objects) has been the key ingredient in the
success of BP-like algorithms for propositional satisfiability
(SAT) and graph coloring (COL) problems. Most notably,
the SP algorithm utilizes this information to solve very large
hard random instances of these problems (Mézard, Parisi,
and Zecchina 2002; Braunstein et al. 2003). The perfor-
mance of SP is unmatched by any other known algorithm
for these challenging combinatorial problems. However, its
origin in the statistical physics community and its roots in
complex methodologies have made SP very hard to under-
stand from a traditional computer science perspective.

The design of the SP algorithm has been inspired by the
observation that the solution space of large random combi-
natorial problems often goes through significant and sud-
den changes in its clustering structure as the problems are
made more and more constrained. For example, at clause-
to-variable density of around 3.92, random 3-SAT instances
suddenly go from having almost all solutions contained in
one large cluster to having solutions distributed in an expo-
nential number of small clusters. Similarly, another phase
shift is believed to occur near density 4.15, when almost
all solutions begin to cluster in only a constant number of
“dominating” clusters. The BP algorithm is believed to be
“confused” by the existence of many clusters, causing con-
vergence difficulties. The SP algorithm was introduced as
an attempt to circumvent this issue by explicitly account-
ing for the existence of clusters. The study of the solution
space structure has been the focus of a number of recent
papers (e.g., (Krzakala et al. 2007; Achlioptas and Ricci-
Tersenghi 2006; Braunstein et al. 2003; Mézard, Parisi,
and Zecchina 2002; Hartmann, Mann, and Radenback 2008;

Ardelius, Aurell, and Krishnamurthy 2007)), especially by
the statistical physics community, which has developed ex-
tensive theoretical tools to analyze such spaces under cer-
tain structural assumptions and large size limits. We provide
a purely combinatorial method for counting the number of
clusters and computing marginals, which is applicable even
to small size problems and can be approximated very well
by message passing techniques.

The problem of computing the number of clusters is hard,
both theoretically and empirically. Doing it efficiently nec-
essarily demands abstraction and approximation techniques.
For constraint satisfaction problems (or a search problems)
defined on a finite set of variables with discrete and finite
domains, the problem of counting the number of solutions is
#P-complete, while deciding whether there exists a solution
is NP-complete. Many practical tools have been proposed in
the past few years for the problem of solution counting, or
model counting as it is sometimes called. These range from
sampling based methods to exhaustive search to knowledge
compilation to the use of special constraints to obtain prob-
abilistically guaranteed lower or upper bounds. For cluster
counting, however, not much is known yet.

The decision problem of deciding whether there exists a
solution cluster is also “only” NP-complete (as there exists a
solution cluster if and only if there exists a solution to begin
with). Nonetheless, counting the number of clusters appears
to be harder, at least in practice, than counting the number of
solutions.1 One intuitive explanation is the following. Sup-
pose we are given a candidate solution s. Verifying whether
s is in fact a valid solution is a polynomial time task, i.e., in
the class P. On the other hand, a similar picture with solu-
tion clusters is much more complex. To begin with, it is not
even clear how to succinctly represent a cluster. Suppose we
are working with the binary domain and n variables, i.e., the
search space is {0,1}n. We can approximate a solution clus-
ter with a string in {0,1,∗}n, with the semantic meaning that
a 0 or 1 value indicates that the corresponding variable takes
only this value in all solutions in the cluster, while a ∗ value
indicates that it takes both 0 and 1 values in the cluster. Inter-
estingly, we can show that even verifying that such a string
in {0,1,∗}n represents a legal cluster of a given CSP is both
NP-hard and coNP-hard, and thus much harder than verify-
ing the validity of a candidate solution (unless P = NP).

Given this computational difficulty, we seek to develop
approximate inference methods for counting the number of
clusters. Our approach can naturally be written in terms
of a graphical model for any discrete constraint satisfaction

1It is easy to see that counting the number of solution clusters
is at least as hard as counting the number of solutions. One way
to reduce the solution counting problem to cluster counting is as
follows. Given a CSP F , construct a new CSP F ′ which has essen-
tially two copies of F on disjoint sets of variables along with an
equality constraint between each pair of corresponding variables.
Then, solutions of F are in one-to-one correspondance with solu-
tions to F ′. Moreover, every two solutions of F ′ differ in the value
of at least two variables, implying that every solution cluster in F ′

is of size one, which in turn implies that the number of clusters of
F ′ equals the number of solutions of F ′, which equals the number
of solutions of F .

problem (CSP). This yields an inclusion-exclusion based
partition function style expression, Z(−1), for counting the
number of clusters, to which we apply the so-called vari-
ational method to obtain BP-like equations for estimating
this quantity. This yields one of the first scalable methods
for estimating the number of clusters of solutions of com-
binatorial problems using a BP-like algorithm. Our tech-
nique applies to discrete constraint satisfaction problems
(CSPs) in general, and we evaluate it on random 3-SAT, ran-
dom 3-COL, and a number of structured instances from the
SAT Competition (Le Berre and Simon (Organizers) 2005).
While the naı̈ve method, based on enumeration of solutions
and pairwise distances, scales to, for example, COL prob-
lems with 50 or so nodes and a recently proposed local
search based method provides estimates up to a few hun-
dred node graphs (Hartmann, Mann, and Radenback 2008),
our approach—being based on BP—easily provides fast es-
timates for graphs with 100,000 nodes. We validate the ac-
curacy of our approach by also providing a non-trivial exact
counting method for clusters, utilizing advanced knowledge
compilation techniques for CSPs, namely binary decision di-
agrams (BDDs) (Bryant 1986) and the decomposable nega-
tion normal form (DNNF) (Darwiche 2001).

Our approach works with the factor graph representation
of a CSP. An arbitrary CSP can be expressed in the form of a
factor graph, a bipartite graph with two kinds of nodes. The
variable nodes, denoted ~x = (x1, . . . ,xn), represent the vari-
ables in the CSP with their discrete domain Dom. The fac-
tor nodes, denoted α, . . . , with associated factor functions,
denoted fα , . . . , represent the constraints of the CSP. Each
factor function is a Boolean-valued function with arguments
~xα (denoting a subset of the variables in~x) and range {0,1},
and evaluates to 1 if and only if the associated constraint is
satisfied. For efficiency of valuating the factor functions, we
assume they only have a constant number of arguments, in-
dependent of n. The factor graph has an edge between a vari-
able node xi and a factor node α if and only if the variable xi
appears in the constraint represented by fα ; we denote this
event by i ∈ α .

The factor representation weighs all variable assignments
~x according to the product of values of all factors. We de-
note this product by F(~x) := ∏α fα(~xα). In our case, the
weight of an assignment~x evaluates to 1 if and only if all of
the factors have value of 1, otherwise it evaluates to 0. The
assignments with weight 1 correspond exactly to satisfying
assignments, or solutions, of the CSP. The number of sat-
isfying assignments can thus be expressed as the weighted
sum across all possible value assignments to ~x, where the
weight is 1 if the value assignment corresponds to a solution
of F and 0 otherwise. We denote this quantity by Z, the so
called partition function at zero temperature:

Z := ∑
~x∈Domn

F(~x) = ∑
~x∈Domn

∏
α

fα(~xα) (1)

Yedidia et al. (Yedidia, Freeman, and Weiss 2005) showed
that there is a fairly mechanical variational method deriva-
tion that yields BP equations for estimating Z. Under cer-
tain assumptions, we derive a partition function style quan-
tity, Z(−1), which has negations and relies on an inclusion-
exclusion argument to count the number of clusters. While

the Z expression involves a summation where every vari-
able takes all possible values in its domain, the Z(−1) ex-
pression generalizes this so that every variable takes all pos-
sible non-empty subsets of values from its domain. Without
going into much detail, we include here our expression for
Z(−1) for completeness, for the case of CSPs with binary do-
mains {0,1} for which this “extended” subset-based domain
is nothing but {{0} ,{1} ,{0,1}}, which we will denote by
{0,1,∗} for simplicity. We define the Z(−1) expression (for
this domain) as follows:

Z(−1) := ∑
~y∈{0,1,∗}n

(−1)#∗(~y)
∏
α

f ext
α (~yα) (2)

where the extended function f ext is defined to evaluate to 1
on~y ∈ {0,1,∗} if and only if f evaluates 1 on every instan-
tiation ~x of ~y obtained by replacing each of the ∗’s with a 0
or a 1. Also, #∗ denotes the number of ∗ values in~y. When
~y has k ∗’s, then it represents a hypercube in {0,1}n with 2k

points.
We empirically demonstrate that Z(−1) is very accurate in

estimating the number of clusters of problems from a vari-
ety of domains, both random and structured. See Figure 1
for an example of random instances, where an exact cluster
count would correspond to all points falling on the diagonal.
Each point in this plot represents a random 3-SAT instance.
The x-coordinate is the true number of clusters while the y-
coordinate is the value of Z(−1) on the formula.

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Number of Clusters

Z (
−1

)

0 20 40 60 80 100 120

0
20

40
60

80
10

0
12

0

Number of Clusters

Nu
m

be
r o

f C
ov

er
s

Figure 1: Number of clusters vs. Z(−1) (left) or number of
covers (right, previous approach) in random 3-SAT for 90
variables and 360 clauses..

For structured formulas from the SAT Competitions, we
did a similar study on small instances whose true cluster
count could be computing using our BDD and DNNF based
method. In this case as well, the value of Z(−1) often pre-
cisely matched the true number of clusters. For example, the
driverlog1 ks99i instance, which has 856,152 solutions, has
precisely 338,100 clusters and Z(−1) computes this value ex-
actly. Similarly, the rovers1 v01a instance has 83,200,608
solutions and 46 clusters, and Z(−1) again computes this ex-
actly. Another non-trivial problem from circuit synthesis,
circuit-4-2-8-16-renum has 4,193,280 and 80,640 clusters,
which Z(−1) again computes exactly.

We also provide some formal results about Z(−1), includ-
ing the following:

Theorem 1. Z(−1) is exact on the 2-SAT problem.
Theorem 2. Z(−1) is exact on the 3-COL problem restricted
to graphs where every solution cluster has at least one vertex
that takes at most two colors in that cluster.

The required graph property in Theorem 2 holds, for ex-
ample, when every connected component of the graph has a
triangle, and therefore our result applies to all such graphs.

Finally, we use the variational method alluded to ear-
lier (with negations, in this case) to obtain BP equations
for estimating Z(−1), denoted BP(−1) . It turns out that
for 3-SAT, BP(−1) is identical to the SP equations. For
3-COL, however, BP(−1) works with all subsets of the 3-
valued color domain, resulting in a richer set of equa-
tions than the SP equations previously proposed for 3-COL
(Braunstein et al. 2003). We empirically demonstrate that
BP(−1) is much better than SP in computing the number
of clusters over a wide range of graph density parameters.
We also show that marginal values obtained using Z(−1)
and BP(−1) are much closer to the true cluster marginals
than the marginals obtained by SP or the previously in-
troduced notion of covers (Braunstein and Zecchina 2004;
Maneva, Mossel, and Wainwright 2007; Kroc, Sabharwal,
and Selman 2007). Overall, our experiments show that Z(−1)
itself is an extremely accurate estimate of the number of
clusters, and so is its approximation, ZBP(−1) , obtained from
our BP(−1) equations.

Main Intuition Behind the Approach
For clarity, we consider binary domains here. Let F be a
Boolean formula, possibly but not necessarily in the con-
junctive normal form (CNF). Let the variables of F be
x1,x2, . . . ,xn. The idea is to use the inclusion-exclusion prin-
ciple for counting: split clusters into two categories, count
clusters that belong to the first category, add to it the num-
ber of clusters the belong to the second category, and then
compensate for the potential overcount by subtracting away
clusters that belong to both categories.

To illustrate the approach, let us first consider how one
could count the number of solutions in a recursive manner,
but repeatedly splitting the space into half. This will lead us
to the traditional partition function expression (at zero tem-
perature), Z, for F . We could compute #solutions(F) by se-
lecting any variable x1, recursively counting the solutions of
F with x1 = v1 for v1 ∈{0,1}, and adding the two sub-counts
(see left pane of Fig.). Each of these sub-counts, denoted
#solutions(F)|x1=v1 is nothing but #solutions(F |x1=v1), i.e.,
we can determine the sub-count by first simplifying F by
setting x1 to v1 and then computing the count of the simpli-
fied formula. We can in turn estimate #solutions(F |x1=v1)
by selecting another variable x2 and recursively repeating
the same decomposition procedure to obtain 4 terms of the
form #solutions(F |x1=v1,x2=v2). Repeating this n times, we
get precisely the summation of 2n terms, as in the Z expres-
sion.

Let’s apply a similar technique to counting solution clus-
ters. To compute #clusters(F), we could first count all clus-
ters in which x1 takes the value v1, for v1 ∈ {0,1}, and
then compensate for the potential overcount by subtracting

x = 1x = 0

y = 0 y = 0

y = 1 y = 1

Abstract depiction of a solution space with several clusters

Figure 2: Left: recursive counting by partitioning the solu-
tion space. Right: fragmentation of solution clusters.

away the number of clusters in which x1 takes both val-
ues, 0 and 1. Thus, #clusters(F) = #clusters(F)|x1=0 +
#clusters(F)|x1=1 − #clusters(F)|x!=0&x1=1. The tricky part
is to compute #clusters(F)|x1=v1 for any v1, as this no longer
necessarily equals the number of clusters in the simplified
formula F |x1=v1 . The reason is possible cluster fragmenta-
tion—a single cluster of F could fragment into two or more
clusters if we restrict the value of x1 to v1, as depicted in the
right pane of Fig. . Thus, one way to prove that Z(−1) is exact
on a given domain (e.g., 2-SAT) is to show that there is no
cluster fragmentation in that domain, and this indeed forms
the main combinatorial argument of our proof of exactness.
The second problem that may arise but only in domains with
three or more values (e.g., 3-COL) is what we call simul-
taneous valuation—even if a variable takes three different
values, say {R,G,B}, within a cluster, there may not be any
valuation of the remaining n− 1 variables for which it can
take simultaneously take each subset of values, say, {R,G}
in the cluster. Thus, when computing the number of clusters
in the simplified formula F |x1∈{R,G}, which is one term we
need for applying inclusion-exclusion, we will incorrectly
get a zero count from this cluster even when x1 takes both
values R and G in this cluster. Therefore, one way to prove
exactness of Z(−1) on domains like 3-COL involves show-
ing that we can circumvent the simultaneous valuation issue
in that domain by, e.g., requiring that the input graph has a
triangle in each of its connected components.

Acknowledgments
This work was supported by the Intelligent Information Sys-
tems Institute, Cornell University (Air Force Office of Scien-
tific Research AFOSR, grant FA9550-04-1-0151), the Defence
Advanced Research Projects Agency (DARPA, REAL Program,
grant FA8750-04-2-0216), and the National Science Foundation
(NSF IIS award, grant 0514429; NSF Expeditions in Computing
award for Computational Sustainability, grant 0832782; NSF EMT
award, grant 0829861). The authors thank Yahoo! for generously
providing access to their M45 compute cloud.

The first author is currently affiliated with Los Alamos National
Lab, Los Alamos, NM, USA.

References
Achlioptas, D., and Ricci-Tersenghi, F. 2006. On the
solution-space geometry of random constraint satisfaction
problems. In 38th STOC, 130–139.
Ardelius, J.; Aurell, E.; and Krishnamurthy, S. 2007. Clus-

tering of solutions in hard satisfiability problems. J. Statisti-
cal Mechanics P10012.
Braunstein, A., and Zecchina, R. 2004. Survey propaga-
tion as local equilibrium equations. J. Statistical Mechanics
P06007.
Braunstein, A.; Mulet, R.; Pagnani, A.; Weigt, M.; and
Zecchina, R. 2003. Polynomial iterative algorithms for
coloring and analyzing random graphs. Physical Review E
68:036702.
Bryant, R. E. 1986. Graph-based algorithms for Boolean
function manipulation. IEEE Transactions on Computers
35(8):677–691.
Darwiche, A. 2001. Decomposable negation normal form.
J. ACM 48(4):608–647.
Hartmann, A.; Mann, A.; and Radenback, W. 2008. Clusters
and solution landscapes for vertex-cover and SAT problems.
In Workshop on Physics of Distributed Systems.
Kroc, L.; Sabharwal, A.; and Selman, B. 2007. Survey
propagation revisited. In 23rd UAI, 217–226.
Kroc, L.; Sabharwal, A.; and Selman, B. 2008. Count-
ing solution clusters in graph coloring problems using belief
propagation. In 22nd NIPS, 873–880.
Krzakala, F.; Montanari, A.; Ricci-Tersenghi, F.; Semerjian,
G.; and Zdeborova, L. 2007. Gibbs states and the set of
solutions of random constraint satisfaction problems. PNAS
104(25):10318–10323.
Le Berre, D., and Simon (Organizers), L. 2005. SAT 2005
competition.
Maneva, E.; Mossel, E.; and Wainwright, M. J. 2007. A new
look at survey propagation and its generalizations. J. ACM
54(4):17.
Mézard, M.; Parisi, G.; and Zecchina, R. 2002. Analytic
and algorithmic solution of random satisfiability problems.
Science 297(5582):812–815.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2005. Con-
structing free-energy approximations and generalized belief
propagat ion algorithms. IEEE Transactions on Information
Theory 51(7):2282–2312.

