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LECTURE 1
An Introduction to Proof Complexity

NP is characterized by a following simple property. For L. € NP, all strings in L have
a short, polynomial time checkable proof of membership in L. This immediately gives one
way of proving NP # coNP that Cook originally came up with in 1970’s — find a language
in coNP that does not have short proofs. Separating NP from coNP this way would also
separate P from NP, and might therefore be hard. The theory of proof complexity gives
us a way of breaking this problem into smaller, more tangible ones. The research in this
area has led to lots of nice, very useful smaller steps towards answering the big question of
P # NP.

1.1. Proof Systems

Consider the boolean formula satisfiability problem, SAT. For formulas in SAT, there is
always a short proof of satisfiability — a satisfying truth assignment — and therefore SAT
is trivially in NP. However, for formulas not in SAT, it is not that clear what a proof of
unsatisfiability could be. Some possible proofs are transcript of failed search for satisfying
truth assignment, truth tables, Frege-Hilbert proofs and resolution proofs. The question is,
can these proofs always be short? If yes, then NP = coNP. This leads us to the definition
of a proof system.

Definition 1.1. A proof system for a language L is a polynomial time algorithm V' such
that for all inputs z, = € L iff there exists a string P such that V" accepts input (z, P).

We think of P as a proof that 2 isin L and V' as a verifier of this proof. The complexity
of a proof system is a measure of how large | P| has to be as a function of |z|.
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2 PAUL BEAME, PROOF COMPLEXITY

Definition 1.2. The complexity of a proof system V is a function f : N — N defined by

= i P
f(n) zerlrzf?;f:n PV acrgelpgs (z,p) | |
We say V' is polynomially-bounded iff f(n) is bounded above by a polynomial function of
n.

In this terminology, NP can be redefined to be precisely the set of languages that have
a polynomially-bounded proof system.

Definition 1.3. A propositional proof system is a proof system for the set TAUT of propo-
sitional logic tautologies, i.e. a polynomial time algorithm V' such that for all formulas F,
F is a tautology iff there exists a string P such that V' accepts input (P, F').

The existence of a proof for each tautology is called completeness of the proof sys-
tem. The fact that existence of a proof implies the given formula is a tautology is called
soundness. Since a formula is unsatisfiable iff its negation is a tautology, we can give the
following equivalent definition of propositional proof systems.

Definition 1.4. A propositional proof system is a proof system for the set UNSAT unsat-
isfiable propositional logic formulas, i.e. a polynomial time algorithm V' such that for all
formulas F, F'is unsatisfiable iff there exists a string P such that V' accepts input (P, F').

Theorem 1.5 ([CR77]). There is a polynomially-bounded propositional proof system iff
NP = coNP.

Proof. We know that SAT is NP-complete. For any formula F', F' € TAUT iff -F €
UNSAT iff —=F ¢ SAT. It follows that both TAUT and UNSAT are coNP-complete. From
what we said above, there exists a polynomially-bounded proof system for TAUT and
UNSAT (i.e. a propositional proof system) iff both these languages belong to NP. O

Over the years, people have come up with a large number of proof systems. Given
any two such systems, it is useful to have a way of saying if one is better than the other. A
natural notion for this is to consider one proof system at least as powerful as a second proof
system if the former can “simulate” the latter efficiently. We give a more formal statement
of this in the following.

Definition 1.6. A proof system U polynomially simulates (or p-simulates) a proof system
Viff
1. Both U and V' prove the same language L, i.e.
JP.V accepts (z, P) <= 3P'.U accepts (z, P')

2. Proofsin V can be efficiently converted into proofsin U, i.e. there is a polynomial-
time computable function f such that

V accepts (z, P) <= U accepts (z, f(P))
Definition 1.7. Proof systems U and V" are said to be polynomially equivalent iff either of
them can polynomially simulate the other.
1.2. Examples of Propositional Proof Systems
1.2.1. Truth Tables

One naive way of proving that a formula computes a certain function is to give a completely
filled truth table for it. Whether the table is correct or not can be checked quickly relative
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to the size of the table. However, the proof size itself is exponential, which renders this
proof system practically useless.

1.2.2. Tableaux/Model Elimination Systems

The idea here is to search through sub-formulas of the given formulas that might be TRUE
simultaneously. For example, if =(A — B) is TRUE, then A must be TRUE and B must
be FALSE. Starting with the input formula, we build a tree of possible models based on
subformulas and derive a contradiction in each branch. This system is equivalent to sequent
calculus (described later) without the cut rule. In terms of complexity, proofs here can be
even larger than truth tables.

1.2.3. Axiom/Inference Systems: Frege Proofs

These systems have a set of axiom schemas such as excluded middle which says |(AV—A),
meaning for any formula A, one can derive (A vV —A) from nothing. It further has a bunch
of inference rules such as modus ponens which says A,(A — B)|B, meaning for any
formulas A and B, one can derive B if A and (A — b) are already present. To show a
given formula is unsatisfiable, we start with the formula and keep applying these axioms
and inference rules to finally derive FALSE.

Axioms/inputs
are sources

Inference rule
associated with
each node

Sink labelled by tautology
(or A for refutation)

Figure 1. The graph of a Frege proof

More precisely, Frege systems start with a finite, implicationally complete set R of
axioms and inference rules. A Frege refutation (or proof of unsatisfiability) of a formula
Fisasequence Fi, ..., F,. of formulas (called lines of the proof) such that

1. R =F,

2. each F} follows from an axiom in R or follows from previous formulas via an

inference rule in R,

3. F, = FaLSE trivially, e.g. z A —z.

We can associate in a natural way a directed acyclic graph with a Frege refutation as
shown in figure 1, where the implicit direction of each edge is from top to bottom. Each
node has an associated inference rule and is derived using this rule from the formulas that
point to it. An example of Frege refutation is shown in figure 2.

Theorem 1.8. All Frege systems are polynomially equivalent.
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Subset of rules
a A (A - B)|B

b. (AOB) | A

c.(AlOB) |B '

d. A, B|(AOB) 1 ((xO(x- y)O((x Oy)--x)) Given
2. (x Ux - y) From 1 by b
3. (xOy) - =x) From 1 by c
4. x From 2 by b
5 (x -y) From 2 by ¢
6.y From 4,5 by a
7.(xDOy) From 4,6 by d
8. x From 6,3 by a
9. (x O=x) = A From 4,8 by d

Figure 2. Sample Frege refutation with 4 inference rules

Proof. Consider two Frege systems given by axiom/inference rule sets R; and Rz. The
general form of an axiom/inference rule would be G, Ga, ... , G| H, meaning that given
G1,G,, ... ,Gy, one can derive H in a single step. The case k¥ = 0 makes this rule an
axiom. We will show how to efficiently simulate R, with R;.

Since R; is complete and R» is sound and finite, for every schema o in R, as above,
there is a constant size proof in Ry of the tautology (G1 A Ga A ... A Gi) — H. Given
any deduction of F' from Fy, Fs, ..., Fi in Rausing o (i.e. F; = Gz : y], F = H[z : y]
for some substitution [z : y]), we can get a corresponding deduction in R; as follows:

1. Derive (Fy A F5 A ... A Fy) which has a constant size proof from Fy, Fs, ... , Fj,
in R;.

2. Copy the R proof of o but use the substitution [s : y] at the start to prove (F; A
By A...ANF,)— F.

3. Derive F from (Fy AF>A...ANFy)and (Fy AF> A...AFy) — F again in constant
size.

Starting with the Ry proof and doing this for every deduction in the proof, we get an
R, proof that is not too large. Hence R, polynomially simulates R,. Since R; and R, are
arbitrary, the result follows. O

1.2.4. Gentzen/Sequent Calculus

This is a proof system where statements are of the form Fi,... , F — G4,... ,G;, mean-
ing (Fi A...ANFy) — (G1 V...V Gq). Axioms in this system are F' — F'. To prove a
formula G, one has to derive — G and to refute it, one has to derive G —. This is done
using the axioms and the following rules:

1L.T,F—-AandD,G— Aimply,(FVG) — A

2. T - A,FimpliesT — A, (FVG)

3. T — A FimpliesT,-F — A

4, T,F — AimpliesT' — A, =F

5. Cutrule:T - A FandILLF — Ximply[,II - A, X

We can characterize sequent calculus cleanly based on what kinds of formulas F" are
used in the cut rule. This system is often used in proof complexity but the proofs are
cumbersome to write down and we won’t use it here. However, we should mention two
things about sequent calculus. First, if we take away the cut rule, we still get a complete
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proof system, though a much weaker one. Second, it is known that sequent calculus is
polynomially equivalent to Frege systems.

1.2.5. Resolution

Resolution forms the basis of most popular systems for practical theorem proving. It is
like Frege systems but uses only CNF clauses. We start with the original input clauses
of a CNF formula F' and repeatedly pick pairs of clauses to apply the resolution rule:
(AVz),(BV-z)|(AV B). The goal is to derive the empty clause A.

Exercise 1.9. Show that resolution may be simulated by sequent calculus where we start
with one sequent per clause and all cuts are on literals.

This proof system can only work with CNF formulas. However, we do not loose much
by requiring input to be in CNF form. This can be seen by the following procedure which
efficiently converts any given formula to one in CNF form (or DNF form in case we are
interested in proving the formula to be a tautology). This uses the trick that is used in
[T68] to reduce SAT instances to CNFSAT instances. The idea is to add an extra variable
ya corresponding to each sub-formula G of the input propositional formula F'. C'g then
includes clauses (or terms in the DNF case) expressing the fact that y takes on the value
of G determined by the inputs to the formula. More precisely,

o IfG = HV J, then CF includes clauses (—yg V ya), (—ys V yg) and (-yg V

Y vV YJ).
e If G = H A J, then Cp includes clauses (-ya V yr), (-ye V ys) and (-yg V
Y1 Vyg).

e If G =—H, then CF includes clauses (—yg V —ym) and (yg V ym).

C'r also contains clause {yr} expressing the truth value of F'. The claim, which can
be easily verified, is that for any assignment «: to the variables of F', « satisfies F' iff there
exists an assignment 3 to variables y¢ such that («a, 8) satisfies Cr. Thus F' and Cr are
equivalent as far as satisfiability is concerned.

1.2.6. Davis-Putnam (DLL) Procedure

Davis-Putnam or DLL procedure is both a proof system and a collection of algorithms for
finding proofs. As a proof system, it forms a special case of resolution where the proof
graph forms a tree. A simple David-Putnam algorithm is shown in figure 3. Variants of
this algorithm form the most widely used family of complete algorithms for satisfiability.

Refute(F')

1. While F contains a clause of size 1
(a) Set variable to make that clause TRUE
(b) Simplify all clauses using this assignment
2. If F' has no clauses then
(a) Output “F' is satisfiable” and HALT
3. If F does not contain an empty clause then (Splitting rule)
(@) Choose smallest-numbered unset variable
(b) Run Refute(F|;—o)
(c) Run Refute(F ;1)

Figure 3. Simple Davis-Putnam Algorithm
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Clauses

. a0bOc
alkc
-b

-al0d
-ddb

O D WN =

adbOc all-c -a0d -dOb

Figure4. Anexample of aDLL refutation tree

A DLL refutation is essentially a tree where we branch at each node based on the value
of a variable. The leaves are labelled with one of the original clauses that is falsified by the
assignment represented by the branch from the root to this leaf. Figure 4 shows an example
of a DLL refutation tree.

Clauses

. a0dbOc
alhc
-b

ﬂaDd
-adb

OlH WN =

aObOc alkc -a0d -dOb

Figure5. Cresating resolution proof from DLL refutation

There is a straightforward way one can translate a DLL refutation to a tree resolution
proof. The result of this translation for the DLL example above is shown in figure 5. We
associate each leaf node with the input clause it is labelled with in the DLL refutation.
For each node both whose children have associated clauses, we resolve these two clauses
on the variable this node was branched on in the DLL refutation. The resulting clause is
associated with this node. We keep doing this until we finally reach the root and associate
with it the empty clause A. This gives a resolution tree deriving A from the input clauses.

1.2.7. Nullstellensatz Proof System

This proof system is based on Theorem 1.10 about polynomials equations over a field K.
The idea is that any common root of the original equations is also a root of any weighted
sum of the corresponding polynomials. Therefore, if we can derive a constant non-zero
polynomial in this way, then the initial equations couldn’t have had a common root. If
we have a language whose inputs can be encoded as a set of equations which do not have
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a common root iff the input is in the language, then Nullstellensatz can be used to prove
membership in that language.

Theorem 1.10 (Hilbert’s Nullstellensatz). A system of polynomials equations Q1 (1, ... ,2,) =
0,...,Qm(x1,... ,2,) = 0 over field K has no solution in any extension field of K iff
there exist polynomials Py (z1,... ,Zpn),.-. , Pn(Z1,... ,25) in K[z1,... ,z,] such that
Z?:l FQ; =1.

Consider an instance of 3SAT. If C; = (z1 V —z2 V x3) is a clause in the instance, we
can translate it into the equation Q¢; = (1 —z1)z2(1—z3) = 0. Let us also add equations

z? — z; = 0 for each variable z;. This will guarantee only 0-1 values. If C4, ... ,Cp, are
all the clauses in the input formula, then it follows from Hilbert’s Nullstellensatz that the
formula is unsatisfiable iff there exists polynomials Py, ... , Pp4n Such that

ZPchj + ZPm_H(.Z'? — .’L’z) =1
j=1 i=1

1.2.8. Polynomial Calculus

Polynomial calculus is very similar to Nullstellensatz proof system. We beginwith @1, @2, ... ;, Q@m+n
as before. However, instead of trying to combine polynomials, we start deriving new poly-

nomials according to the following rule. Given polynomials R and S, we can infer aR+bS

forany a,b € K. We can also infer z; R for any variable x;. The goal is to derive the con-

stant polynomial 1. The idea is that any common root of the original polynomials is also a

root of any derived polynomial. Therefore, if we can infer a constant non-zero polynomial,

then the initial polynomials couldn’t have had a common root.

The degree of a polynomial calculus proof is the maximum of the degrees of all poly-
nomials appearing in the proof. It is known that we can find a proof of degree d in time
n9(@ ysing Groebner basis-like algorithm from linear algebra [CE196]. We should note
here that polynomial calculus is a special case of AC°[p]-Frege if K = GF(p), and we
only need depth 1.

Exercise 1.11. Show that every unsatisfiable formula over n variables has a proof of de-
gree at most n + 1 for Nullstellensatz as well as Polynomial Calculus.

1.2.9. Cutting Planes

The concept of cutting planes was introduced to relate integer and linear programming
([G58, C73]). As a proof system, this is a special case of TC?-Frege with depth 1. The
objects here are linear integer inequalities. For instance, a clause (z1 V -2 V x3) becomes
the inequality 1 + (1 —z2) + 23 > 1. To these, we add inequalities z; > 0and1—z; > 0
to force each variable x; to have a value between 0 and 1, both inclusive. The goal is to
derive the contradiction 0 > 1 using the following three rules:
Addition: Froma;z1+...+an,z, > Aand byz; +...+ bz, > B, one can derive
(a1 + b1)z1 + ...+ (an + bp)z, > A+ B.
Multiplication by positive integer: From a;z1 + ... + a,2, > A and any positive
integer ¢, one can derive ca1zy + . .. + can T, > cA.
Division by positive integer: Fromca,x;+...+ca,z, > B, one canderive a;x; +
oot anzy > [Ble].
The reason this system is called cutting planes will be clear from figure 6. The starting
inequalities define a region in the n-dimensional space which is bounded by lines that
might intersect at non-integer points. Adding two such inequalities gets us a line that
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Figure 6. Why isthe proof system called cutting planes?

doesn’t pass thru any integer point. Applying division rule to such an inequality effectives
moves this line to the nearest integral one in the direction given by the inequality. This way
we “cut” in the feasible region into a smaller one by applying the division rule and taking
the ceiling of the constant on the right hand side of the inequality.

Theorem 1.12. Cutting planes polynomially simulate resolution.

Resolution (albOcd) (~alblclhf)

(bCc~d~f)
Cutting a+b+c+(1-d)=>1
Planes (l-a) +b+c+(1-f)=1
(1-d) =20
(1-f)=0

2b + 2¢ + 2(1-d) + 2(1-f) = 1 Addition
b+ c+ (1-d)+ (1-f)=1 Division

Figure 7. Simulating resolution using cutting planes

It is not hard to see how cutting planes can simulate resolution efficiently. An example
is shown in figure 7. We first convert each input clause to the corresponding inequality in
the standard way. Resolving two clauses then is simply adding them along with certain
inequalities of the form x; > 0 and 1 — x; > 0 so that all coefficients are 2. Dividing
the resulting inequality by 2 gives one that corresponds to the resolvant of the two original
clauses.

1.2.10. C-Frege Proof Systems

Many circuit complexity classes such as non-uniform NC1, AC°, AC°[p], ACC,TC"® and
P/poly are defined as follows:
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C = {f : f is computed by polynomial size circuits with structural property P¢}.
In a similar manner, we define C-Frege to be the p-equivalence class of Frege-style proof
systems such that

1. each line has structural property Pg,
2. there is a finite set of axioms and inference rules, and
3. the system is complete for circuits with property P¢.

Before saying anything more about C-Frege systems, let us quickly review some of

the important circuit complexity classes.

P/poly : polysize circuits

NC; : polysize formulas = O(log n) depth fan-in 2 circuits

CNF : polysize CNF formulas

AC? : constant depth unbounded fan-in polysize circuits using A, V, - gates

AC®[m] similar to AC? with (= 0 mod m) tests added

TC® :similarto AC? with threshold gates added

We know the following relationships among these complexity classes:
e CNF C AC® C AC°[p] c TC" for p prime

e TC® C NC' C Plpoly C NP/poly

o AC°[m] C #P

Exercise 1.13. Show that every formula may be re-balanced to an equivalent one of loga-
rithmic depth. (Hint: First find a node in the formula that has constant fraction of the nodes
in its subtree.)

From the above exercise, it follows that Frege systems are polynomially equivalent to
NC-Frege because NC? circuits can be expanded into trees (formulas) of polynomial
size. Another result about C'-Frege systems is that resolution is a special case of CN F'-
Frege. C'N F-Frege however is not strong enough to express the p-simulation among Frege
systems.

1.2.11. Extended Frege Systems

Extended Frege proofs are like Frege proofs plus extra extension steps that define new
propositional variables to stand for arbitrary formulas on current set of variables. These
new variables are like the variables y¢ in the conversion of arbitrary formulas to CNF.
However, they can be defined for any formula in the proof, not only for the input formulas.
These extension variables allow one to write formulas more succinctly and increase the
power of Frege systems. Since each extension variable describes a circuit in the input
variables, extended Frege is equivalent to P/poly-Frege.

1.3. Proof System Hierarchy

It is useful to understand the relationship between the large number of proof systems that
we know. The notion of polynomial simulation we defined earlier can be used to say that
one proof system is at least as powerful as a second one. However, fast simulation might
be too hard a condition to satisfy. One weaker notion of what it means to be at least as
powerful as another proof system is polynomial domination, which is defined now.

Definition 1.14. A proof system U p-dominates another proof system V' iff there is a poly-
nomial f : N — N such that

3P.V accepts (z, P) <= 3P'.|P'| < f(|P|) and U accepts (z, P')
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ZFc>

P/poly-Frege

Figure 8. Some proof system relationships

Some of the proof system relationships that we know are summarized in figure 8. One
might ask why we keep working with weaker proof systems when there are stronger ones
we know. We do this for several reasons. First, different proof systems formalize different
types of reasoning that we use and it should be useful to understand these types. Second,
many weaker proof systems such as Davis-Putnam, Nullstellensatz and polynomial calcu-
lus have better associated proof search strategies and are therefore more useful as theorem
proving techniques than other stronger systems. Third, there is a natural correspondence
between proof system hierarchy and circuit complexity classes. As in circuit complexity,
analyzing systems working upwards in proof strength helps one gain insight for useful
techniques.

We do not know how high the hierarchy goes or if there is some proof system sitting
at the top of this hierarchy. We formally define below what it means to be at the top of the
hierarchy and say what implications the existence of such a proof system has.

Definition 1.15. U is super iff U p-dominates all other propositional proof systems. U is
super-duper iff U p-simulates all such systems.

Theorem 1.16 ([KP89]). Super-duper proof systems exist implies NEXP = coNEXP. Su-
per proof systems exist implies NEXPEXP = coNEXPEXP.



LECTURE 2
Lower Boundsin Proof Complexity

The first step in proving a lower bound for a proof system is to find a hard example
for that proof system. Consider, for instance, the C-Frege system. A tautology seems
likely to be hard to prove in C-Frege if the natural proof of it requires concepts that are
not computable in circuit complexity class C. For example, Majority is not computable in
ACP[p]. This suggests that something counting-related might be hard for AC°[p]-Frege.
A second place to look for hard examples is randomly chosen tautologies or unsatisfiable
formulas. These might be hard to prove because they simply have no particular structure
that could be exploited to get a really short proof. We begin with one of the basic counting
principles, the pigeonhole principle, and later show lower bounds for random formulas and
graphs structures.

2.1. ThePigeonhole Principle

The pigeonhole principle PHP™ ™" says that there is no 1-1 function from m things to
n things if m > n. The onto version of this, ontoPH P™™™, says that there is no 1-1,
onto function mapping m things to n things for m > n. This can be easily encoded as a
propositional formula over variables P;; which represent pigeon ¢ mapping to hole j. The
clauses ensure that any satisfying assignment to these variables corresponds to a valid 1-1,
onto function from m things to » things. There are four kinds of clauses:

fistotal: (P VPaV...VPy), fori=1,...m

fisl-1: (=P V—FPy;),forl1<i<k<m,j=1,...,n

fisonto: (P V Py V...V Pyj),forj=1,...,n

fisafunction: (=P V-Py), fori=1,... ,m,1<j<k<n

We note here that one usually leaves out the function clauses because they are re-
dundant for a lower bound. One can derive the relational form of this mapping from the
functional form by setting P;; = P;; A =Pt A ... A Pyj_y).

2.1.1. Usual Inductive Proof of PHP?—"—1

The base case PH P21 is trivially false. For the inductive steps, consider the hole pigeon
n maps to under a mapping f. If f(n) = n — 1, then fon {1,... ,n — 1} also violates
PHP™1—=7=2 and we are done by inductive hypothesis. Otherwise define another map-
pingg:{1l,... ,n—1} = {1,... ,n—2}byg(i) = f(5) if f(i) #n—1and g(¢) = f(n)

11
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otherwise. It is easy to check that g is 1-1 and onto iff f is. Further, g is a mapping from
n — 1 things to n — 2 things and must therefore violate PH P~ 1—n—2,

2.1.2. Extended Frege Proof of PHPn—7~1

The inductive proof we gave above can be easily translated into an extended Frege proof.
P;; are our original variables as usual. To perform the inductive step, we define new
variables Qi; = Pi; V(= Py(n—1) APjin—1) A Ppj)fori=1,... ,m—1,j=1,... ,n—2.
This gets us a short extended Frege proof of PH P71,

2.1.3. Cutting Planes Proof of PHP™—"

The problem can be reformulated for cutting planes as follows. The constraints are

L] -Pil +P11 ++PZTL Z 1,f0ri: l,m

o P + Py <l,fori1<i<k<m,j=1,...n

e Py >0, P; <Lfori=d,.... mj=1,...,n
The goal is to derive Py; + Py; + ... + P;_1); < 1. We do this as follows. For k£ from 3
tom, do

1. Add (k—2) copies of Pyj+ Pyj+...+Pj_1); < landoneeachof Pj+ P; <1
toget(k—l)Plj +(k—1)P2j +...+(k—1)Pk]' <2k-3
2. Apply division rule to get Pi; + P + ...+ Pp; < 1.
Summing these inequalities Py; + P»; + ...+ Pp; < 1 overall j gives that the sum of all
P;;’s is at most n. Moreover, summing up the first set of input inequalities gives us that the
sum of all P;;’s is at least m. Together these two imply m < n and we get a contradiction.

2.1.4. Resolution Proof of PHP"—n—1

Unlike Frege and cutting planes proofs, pigeonhole principle requires exponential size
resolution proofs.

Theorem 2.1 ([?, ?]). Any resolution proof of PH P"~"~1 requires size at least 2*/20,

The original proof idea was based on bottleneck counting. We view truth assignments
flowing through the proof. Assignments start at A and flow out torwards input clauses. A
clause in the proof lets only the assignments it falsifies to flow through it. The key thing is
to prove that at a middle level in the proof, clauses must talk about lots of pigeons. Such a
middle level clause falsifies only a few assignments and thus there must be lots of them to
let all the assignments flow through.

A present here a much simplified argument which goes as follows. We show that a
partial assignment to the variables, called a restriction, can be applied to every small proof
so that one, every large clause disappears, and two, the result is still a PH P™ —~"'~1 proof
for some good size n’. We next show that every proof of PHP™ ~™ ~1 contains a medium
complexity clause and further that every medium complexity clause is large. This get us a
lower bound on proof size of PHP™ "1,

We say a truth assignment is critical if it matches all » — 1 holes to all but one of
the pigeons. Such an assignment is barely unsatisfying — it always satisfies all 1-1, onto
and function clauses. The only input clauses that may not be true under a critical truth
assignmentare C; = (P;, V P;a V... V), ) which say that pigeon ¢ is mapped somewhere.
This allows us to modify each of the clauses in the proof to a positive one without blowing
up the size of the proof. More precisely, we replace = P;; with (P;1 V... Pi_1); V Piy1); V
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...V Py;). Itis easy to see that these new clauses let precisely the same critical truth
assignments through as they the original ones did.

To prove that any P H P proof has medium a complexity clause, we do the following.
Given a positive clause C and I C {1,...,n}, we say I implies C iff whenever for all
critical truth assignments o, Vi € I, C;(a) = TRUE < C(a) = TRUE. The complexity
of C, denoted comp(C), is the minimum |I| such that I implies C. It is not very hard
to show that every resolution proof contains a clause of complexity m between n/3 and
2n /3. We do this by looking at clause complexities. We know that A has complexity n and
the input clauses have complexity at most 1. Moreover, if clause A and B imply a clause
C, then comp(C) < comp(A) + comp(B). If we walk backwards in the proof from A,
clause complexities decrease only in a sub-additive way. Hence they can’t jump over the
(n/3,2n/3) region. Thus there must always be a clause whose complexity is between n/3
and 2n/3.

Now we prove that clauses with medium complexity (between n/3 and 2n/3) must
be big. Suppose I implies C and |I| = m = comp(C),n/3 < m < 2n/3. Since I is
minimal, for each ¢ € I, there is a critical truth assignment «; such that C;(a;) = C(a;) =
FALSE. For each j ¢ I, toggle «; to yield «;j where the latter assignment maps pigeon
7 to the hole k to which ¢ was mapped earlier. This new assignment satisfies I and must
therefore satisfy C; also. Since C;(«;j) = TRUE, literal P;; must be in the clause C since
it is the only new TRUE variable since «;. Therefore for each ¢ and k&, we have a variable
Py in C, implying that C is big if it is minimally implied by a medium complexity clause.
The exact bound is m(n — m) > 2n?/9 because k can be anything not in 1.

We finally describe the restriction argument that gets us the desired result. Restrictions
in this case are partial assignments that map certain pigeons to certain holes. To map a
pigeon ¢ to hole j, we set P;; to TRUE and set all other P;;, or Py; are set to FALSE. This
reduces PHP™>"=1 to PHP™ >~ where n’ = n — 1. To complete the proof, let
us call a positive clause large iff it has at least n?/10 literals. Assume, for a proof by
contradiction, that some resolution proof of PHP"~"~1 has a resolution proof with at
most S < 27/20 large clauses. On average, restricting a P;; to TRUE will satisfy /10 of
all large clauses because large clauses each have 1/10 of all variables. Choose a P;; that
satisfies the most large clauses. This restriction decreases the number of large clauses by
a factor of 9/10. Now repeat such restriction logg ;o S < 0.329n times. The remaining

proof proves PH P™ ~" =1 for some n' such that 2(n’)2/9 > n2/10 and does not have
any large clauses. This is a contradiction because such a refutation, from what we saw in
the previous paragraph, must have a clause of size at least 2(n')2/9 which qualifies as a
large clause even for PHP" "1,

2.2. Width vs. Size of Resolution Proofs

Let F' be a set of clauses over variables z1, ... ,z, and w(F) be the number of literals
in the largest clause in F. If P is a resolution proof of F, width(P) is the number of
literals in the largest clause in P. Let width(F") denote the minimum of all proofs P of F’
of width(P). The following theorems due to Ben-Sasson and Wigderson relate size lower
bounds on P to lower bounds on width(P).

Theorem 2.2 ([BW99]). Every Davis-Putnam (DLL)/tree-like resolution proof of F' of
size S can be converted to one of width [log, S| + w(F).

Proof. We show this by induction on the size of the resolution proof. Clearly, the claim
holds for S = 1. Assume that for all sets £ of clauses with a tree-like resolution refutation
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of size S’ < 3, there is a tree-like resolution proof P’ of F’ with width(P’) < [log, S’ +
w(F").

<=3SP2 sw

Figure 1. Converting small size proof to one of small width

Now consider a tree-like resolution refutation of size S of a set F' of clauses and let
x be the last variable resolved on to derive the empty clause A. Clearly, one of the two
subtrees at the top has size at most S/2 and the other has size strictly smaller than S.
W.l.0.g. let these be the left and the right subtree, respectively. Also assume —z comes
from the left subtree and = from the right as in figure 1.

Since we can prove -z from F' in size at most 5/2, we can also prove A from F|,.
in size at most /2. The induction hypotheses now implies that we can also derive A from
F|—1 inwidth at most [log,(5/2)] +w(F) = [log, 1+ w(F) — 1. Adding -z to each
of the clauses in this proof lets us derive -z from F' in width [log, ST +w(F). In asimilar
way, starting with the right subtree, which is of size strictly smaller than .S, we can derive
A from F|, o in width at most [log, S + w(F).

Let us take the left subtree and reconstruct it so that it derives —z in width [log, S +
w(F). Now plug this tree at the bottom of each leaf of the right subtree (see figure 1).
This allows us to resolve z right at the bottom of the right subtree, and we are effectively
left with F'|,.o. From what we said before, we can now derive A from this in width
[log, S| + w(F'). This completes the proof. O

Corollary 2.3. Any Davis-Putnam (DLL)/tree-like resolution proof of F' requires size at
least ZQ(width(F)fw(F)) .

Theorem 2.4 ([BW99]). Every resolution proof of F of size S can be converted to one of
width O(y/nlog S) + w(F).

Proof. The key idea behind this proof is to repeatedly find the most popular literals ap-
pearing in large clauses in the given resolution proof. Resolving on these literals at the
very beginning allows us to keep the width of the whole proof small.

Let us call a clause large if it has width at least W = +/2n1n S. Since there are at
most 2n literals and at least W of them appear in any large clause, an average literal must
occur in at least TW/2n fraction of large clauses. Let k be such that (1 — W/2n)*S < 1.
We show by induction on n and k that any F' with at most S large clauses has a proof of
width < k + w(F'). The base case is trivial. Assume now that the theorem holds for all
smaller values of n and k.

Choose the literal z that occurs most frequently in large clauses and set it to 1. This,
from what we observed before, will satisfy at least a W/2n fraction of large clauses. What
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we get as a result is a refutation of F|,.; with at most S(1 — W/2n) large clauses. By
our induction hypothesis, F'|,._1 has a proof of width at most & — 1 + w(F’). Hence there
is a derivation of -~z from F' of width at most k& + w(F").

Now consider F'|,.. If we restrict the proof of F' which has at most S large clauses,
we get a proof of F|, .o with at most .S large clauses over one less variable. The induction
hypothesis implies that there is a refutation of F'|,._q of width at most k& + w(F).

As in the proof of tree-like resolution case, we derive =z from F' in width at most
k + w(F) and resolve this with each clause of F to get F'|,.o. Now we refute this in
width k + w(F). O
Corollary 2.5. Any resolution proof of F' requires size at least ZQ(M).

We note here that this relationship between width and size is optimal for general res-
olution as shown by the following result:

Theorem 2.6 ([?]). There are tautologies with constant input size and polynomial-size
proofs that require width Q(n).

[?] and [BW99] use graph pebbling and width-based lower bounds to show that Davis-
Putnam (DLL)/tree-like resolution can require exponentially larger (2¢2(n/10g ) size) proofs
than general resolution.

2.3. Resolution Proofs Based on Width-Size Relation

Given F, a set of unsatisfiable clauses, let s(F') be the size of the minimum subset of F
that is unsatisfiable. Define boundary 6 F' of F' as the set of variables appearing in exactly
one clause of F'. Let the sub-critical expansion of F" be

I<n%§ min{|6G| : G C F,s/2 < |G| < s}

The following lemma, which is depicted in figure 2, relates proof width to sub-critical
expansion of F.

Lemma 2.7 ([CS88]). If P is a resolution proof of F, then width(P) > e(F).

s/2tos s(F)
A

GOQQ@OOQ

\ ) /

contains 3 6 C%}:j U

Figure 2. Relating proof width to sub-critical expansion

Corollary 2.8. Any Davis-Putnam/DLL proof of F' requires size at least 2¢(*) and any
resolution proof requires size at least 22(¢* (F)/n)
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2.3.1. Random k-CNF Formulas

Let distribution £ ' over random k-CNF formulas be defined as making m = nA inde-
pendent choices of one of the 2’“( ) clauses of length k. A here is called the density of the
graph. Let F' be chosen from this distribution (also written F' ~ F¥ a)- Itis well known
that satisfiability of such random k-CNF formulas is determined by a density threshold.
As shown in figure 3 for £ = 3, random formulas with density more than a certain thresh-
old are asymptotically almost surely unsatisfiable, whereas those with density below are
threshold are a.a.s. satisfiable. For random graphs with density above the threshold, reso-
lution proofs of satisfiability are almost surely super-polynomial, as stated in the following
theorem:

Theorem 2.9. For F' ~ F,’;A, almost certainly for any e > 0,

1. Any Davis-Putnam (DLL) proof of F' requires size at least 2 AZ/R-DFe
2. Any resolution proof of F' requires size at least 2 a*/(+=2)+<

Figure 3. Threshold behavior of random 3SAT formulas

This result implies that random k£-CNF formulas are provably hard for the most com-
mon proof search procedures which are DLL type. In fact, this hardness extends well
beyond the threshold. Even at density A = n'/3, current algorithms for random 3-CNF
have asymptotically the same running time as the best factoring algorithms.

The proof of this theorem is based on properties of random hypergraphs. Let F' be
a hypergraph. Denote by 6 F the boundary of F', which is the set of degree 1 vertices of
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F. The density of F'is the ratio of the number of hyperedges to the number of vertices.
We say that a subset of F' has a system of distinct representatives (see figure 4) iff with
each hyperedge in F', we can associate a unique vertex (a representative) belonging to that
hyperedge. Let sy (F") be the size of minimum subset of F' that does not have a system of
distinct representatives. Define the sub-critical expansion, ez (F'), of F as

eg(F) = 3<T3%{F) min{|6G| : G C F,s/2 < |G| < s}

The following theorem allows us to get lower bounds on sy (F') and ey (F') for random
hypergraphs:

Theorem 2.10 (Hall’s Theorem). A hypergraph F' has a system of distinct representatives
iff every subgraph of F has density at most 1.

variables/nodes ©

representatives ®

clauses/edges Q

Figure4. System of distinct representatives

A k-CNF formula can be associated with hypergraphs in a natural way, where each
variable becomes a vertex and each clause becomes an edge. This mapping discards the
distinction between a variable and its negation, but is sufficient for proving useful results.
It is easy to see that if the hypergraph has a system of distinct representatives, then the
corresponding k-CNF formula is satisfiable and a satisfying assignment can be obtained
by setting each representative to satisfy the clause which it represents. If we define notions
s(F) and e(F) for the k-CNF formula corresponding to a hypergraph, then graph theoretic
lower bounds on s (F') and e (F) allow us to get lower bounds on s(F') and e(H).

Lemma 2.11. If F ~ EF 5, then almost certainly

1. S(F) =0 (W), and

The proof of this theorem is based on the fact that a k-uniform hypergraph of density
bounded below 2/k, say 2/k — e, has average degree bounded below 2. This implies that
a constant fraction of nodes are in the boundary. Fix a set .S of vertices/variables of size
r. The probability p that a single edge/clause lands in S is at most (r/n)*. Therefore the
probability that S contains at least ¢ edges is at most

eAnp\? eArk—1\1
Pr[B(An,p)Zq]S( . ) 5(7;;1
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To get a bound on s(F"), we apply this for ¢ = r + 1 for all » upto s using union bound:

Pr[s(F)<s] < XS: (Z) (%)rﬂ

r=k
1

- T nk-1

r=k

. +1

< XS: r [e2Ark—2\"
- en nk—2

r=k

This quantity is o(1) in n for s = O(n/A'/(*=2)), In a similar way, we get a bound on
e(F) by summing the probability for ¢ = 27 /k for all r between s/2 and s.

Prle(F) <s] < Z (:) (%)%/k

r=s/2

i ne\r’ 6A7‘k71 2r/k
_2/2 (T) ( nk—1 )
5. [ eltk/2 Apk—1-k/2
> ()
r=s/2
Thisis o(1) inn for s = ©(n/A%/ (k=2)),

2.3.1.1. Upper Bound. We end this section by giving a tight upper bound for Davis-
Putnam (DLL) proofs random k-CNF formulas. The simple Davis-Putnam algorithm
shown in figure 5 achieves the bound we give.

Refute(F')

1. While F contains a clause of size 1
(@) Set variable to make that clause TRUE
(b) Simplify all clauses using this assignment
2. If F' has no clauses then
(a) Output “F' is satisfiable” and HALT
3. If F' does not contain an empty clause then (Splitting rule)
(@) Choose smallest-numbered unset variable x
(b) Run Refute(F|;—o)
(c) Run Refute(F ;1)

IA

2r/k

IA

Figure 5. Simple Davis-Putnam Algorithm

Theorem 2.12 ([BKPS98]). For F' ~ FT’f’A and A above the satisfiability threshold, the

simple Davis-Putnam (DLL) algorithm almost certainly finds a refutation of size QO(AI/&—” )n0(1)_

The idea of the proof is to look at 2-clauses (z V y) as edges (z,y) and (7, ) in a
directed graph with literals of the formula as vertices. The formula is unsatisfiable is there
is a contradictory cycle, i.e. one that contains both = and (z) for some variable z. It can
be shown that after setting Q (5r/tx—3y) Variables, at least half the variables left are almost
certainly in contradictory cycles of the 2-clause digraph. But now a few splitting steps will

pick one of these almost surely and setting clauses of size 1 will end the algorithm.
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2.3.2. Random Graph k-Colorability

Consider a random graph G ~ G, , where each edge occurs independently with probability
p. There is a sharp threshold for whether such a graph is k-colorable or not. For example,
for k = 3, the threshold is around 4.6 /n. The following theorem states that random graphs
almost surely require large proofs of non-k-colorability. The basic outline is the same as
that for k-CNF. The notion of boundary of a sub-graph is the set of vertices of degree less
than k. These are the vertices that can be trivially colored because they have at most & — 1
neighbors. s(G) in this case is the smallest non-k-colorable subgraph of G.

Theorem 2.13 ([BCMO00]). Non-k-colorability almost surely requires exponentially large
proofs for random graphs.

2.4. Nullstellensatz and Polynomial Calculus L ower Bounds
2.4.1. Pigeonhole Principle

ontoPHP™™" has a natural representation in terms of polynomials. If f is a mapping
from pigeons to holes and P;; is a variable saying pigeon ¢ is mapped to hole 4, then the
following equations ensure that any good assignment to P;;’s is a valid mapping.

fistotal: Pjy + P +...+ P, —1=0,fori=1,... ,n

fis1-1: Piijj =0,for1l <i<ji<m,j=1,...n

fisonto: Py + P+ ...+ Py —1=0,forj=1,...,n

If m = n + 1, we can simply sum up all the total equations and subtract the onto
equations to get 0 = 1. This gives a degree 1 Nullstellensatz proof of ontoPHP™ ™1,
In general, we have the following bounds:

Theorem 2.14 ([BR98]). If m = n + p* and n > p**, then Nullstellensatz proofs of
ontoPH P™™™ over GF(p) have degree at least 2. For p does not satisfy these condi-
tions, Nullstellensatz proofs of ontoP HP™™ over GF'(p) are of small degree.

Theorem 2.15 ([R98]). Polynomial Calculus proofs of PH P™—™ (without onto clauses)
require degree n/2 for any m and any field.

2.4.2. Counting Principles

Let Count%"l denote the fact that one cannot perfectly match members of an odd size set.
More generally, let Count]™ denote the fact that there is no perfect r-partition of m things
if r does not divide m. We will encode Count!™ as a set of polynomial equations. Let
E ={1,...,m}" be the set of all size r subsets of {1,...,m}. In other words, E forms
a complete r-uniform hypergraph over m vertices. For each e € E, we have a variable z..
Then there are two sets of equations:

1. Every pointis covered: 1 — 3" .. z. =0,fori=1,... ,m

2. Edges are disjoint: z.zy = 0,foralle # f € Est.en f # ¢

Exercise 2.16. Prove that Count)" is easy to refute over Z,..

2.4.3. Tseitin Tautologies

Let G(V, E) be a given lowe degree graph with 0-1 charges on its nodes. Further, assume
that the total charge on the graph is odd. Then there is no way to put 0-1 weights on the
edges of the graph such that the charge on each vertex is the parity of the weights on the
edges touching that vertex.
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A natural way to represent this is to use mod2 equations. however, we will use Fourier
basis for this. If we have a variable z over {0,1}, we form an equivalent variable y over
the Fourier basis {1, —1} by setting y = (—1)®, or as a linear transformy = 1 — 2z. The
equation forcing variables to take legal values now becomes y2 — 1 = 0 and a contradiction
is 1 = —1. This transformation is convenient for expressing parity: 1 ®x2®... @z =0
becomes y1ys ...y = 1.

Exercise 2.17. Show that this transformation to Fourier basis, being linear and invertible,
preserves degrees of proofs.

For Tseitin formulas in Fourier basis, there is a variable y. for each e € E. 9, takes
values in {1, —1} and the constraining equation is y2 = 1. Equation saying parity of edge
weights is equal to the charge of the vertex are: [[, ,c,ye = (—=1)charge(v) for every
v € V. Degree of these polynomial equations equals the degree of the graph. We have the
following lower bounds for Tseitin tautologies expressed in this form.

Theorem 2.18. There is a constant degree graph G such that a Tseitin tautology for G
with all charges 1 requires

1. degree Q(n) to prove in Nullstellensatz [?]
2. degree Q(n) to prove in Polynomial Calculus [BGIP99]

These results use expander graphs, which we define below.

Definition 2.19. Let G = (V, E) be a graph. G has expansion ¢ iff every subset S of at
most |V'|/2 vertices has at least (1 + €)|S| neighbors.

Theorem 2.20 ([?, ?]). Constant degree regular bipartite graphs with constant expansion
€ > 0 exist.

Let E(S) C E be edges of G with one end-point in .S and one outside S. Expansion
e implies E(S) > €S > 0 for all sets .S of size at most n/2. Considering such graphs
gets us a degree lower bound of en /8 for Nullstellensatz and Polynomial Calculus proofs
of Tesitin tautologies.

We give a general overview of the proof. Every input equation for Tseitin tautologies
has two terms. We can think of the equation as an equivalence of monomials where every
monomial corresponds to the parity of a subset of edges. Each equivalence corresponds to
the parity of the set of ecdges leaving a small non-empty set of vertices. We initially start
with just a single vertex and then use expansion properties of G to increase the size of this
set of vertices. Since Fourier basis is essentially equivalent to equations mod 2, we will,
for simplicity of reasoning, think of the problem as mod 2 equations.

Given a set S of vertices, let ¥ denote the sum of the original edge variables leaving
S. Every equation is of the form £ = |.S| (mod 2). We start with S = {v} and all charges
are 1. If we add two equations X s = |S| (mod 2) and g = |.S’| (mod 2), then combining
these two sets gets us Xsasr = |SAS’| (mod 2), where A is the set difference operator. If
we always have |[SAS’| < n/2, then |[E(SAS")| > 0. This means there will be an edge
going out of SAS’ and we will not reach a contradiction. However, if we start with sets of
size at most n/4, then this won’t happen. By expansion property of G, sets of size more
than n/4 have at least en/4 edges leaving them. Hence, if one is working with sums of
fewer than en /4 terms, one won’t see such sets. Each binomial equation corresponds to a
parity summation equation with some portion of the equation in each monomial. If each
of these monomial has degree at most en /8, then we cannot reach a contradiction. Hence
the degree of any proof has to be more than en /8 for graphs with expansion e.

This lower bound for Tseitin tautologies has many implications.
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1. We can reduce Tseitin tautologies to Count3™+*. This implies a Q(n) degree lower
bound for Count3™** for all fields K with char(K) # 2.

2. We can generalize Tseitin tautologies to T'seitin(p) where we encode in extension
fields having p** roots of unity instead of using the Fourier basis. This gives us
similar binomial degree lower bounds if char(K) # p.

3. We can reduce T'seitin(p) to Count?™**. This implies Q(n) degree lower bound
for Count?™+" for all fields K with char(K) # p.

2.5. Polynomial Calculuswith Resolution - PCR

As the name suggests, Polynomial Calculus with Resolution combines the power of the two
underlying proof systems. For each atomic proposition =, a PCR proof has two variables
z and z', where ' stands for —z. The equations governing values taken by = and z’ are:
r+2'—1=0,22 —z=0and (z')? — 2’ = 0. Aclause (X; V =z, V x3) for resolution
translates as (1 — z1)z2(1 — x3) = 0 or equivalently as x| zoz5 = 0. Proof rules are the
same as those for Polynomial Calculus.

Exercise 2.21. Show that PCR simulates resolution with degree = width and no increase
in size.

Exercise 2.22. Show how the resolution relationships between size and width apply to
PCR using size and degree.

Exercise 2.23. Show that binomial equations work just as in Polynomial Calculus if char-
acteristic of the underlying field is not 2.

We derived resolution lower bounds for random k-CNF formulas using sub-critical
expansion ey (F'). Those bounds also translate to systems with polynomial equations.

Lemma 2.24 ([BI199]). The degree of any PCR, Polynomial Calculus or Nullstellensatz
proof of unsatisfiability of F' is at least ey (F)/2 if the characteristic of the underlying
field is not 2.

We first convert a given k-CNF formula into parity equations in a natural way. For
example, clause (z1 V —z2 V z3) translates to z1 + (z2 + 1) + 3 = 1 (mod 2), i.e.
21+ 22 +x3 = 0 (mod 2). The goal is to derive the contradiction 0 = 1 (mod 2) by adding
collections of equations modulo 2. The transformation to Fourier basis is also straight-
forward. The corresponding connection with sub-critical expansion is that the number of
variables in the longest equation is at least ey (F). This gets us the following lower bounds
for random k-CNF formulas for PCR, Polynomial Calculus and Nullstellensatz.

Theorem 2.25. For random k-CNF formulas chosen from ]—'ﬁﬁA, almost certainly for any
€ > 0, any PCR, Polynomial Calculus or Nullstellensatz refutation over a field K with

char(K) # 2 requires degree at least n/A2/(k=2)+¢ and size at least 2¢en/A" * 7%

LFor char(K) = 2, the conversion to Fourier basis does not work.






LECTURE 3
Automatizability and I nterpolation

We defined a notion of complexity of a proof system, which essentially said how big a
proof in that proof system has to be for showing membership in a given language. Lower
bounding the size of such a proof was a step towards our big goal of proving NP # coNP.
This definition, however, didn’t say anything about how costly it is to find a short proof in
the given proof system. Whereas short proofs might exist, finding them may not be easy.

3.1. Automatizability

Definition 3.1. Given a proof system V for a language L and a function f : N x N — N,
we say that V' is f(n, X )-automatizable iff there is an algorithm Ay such that given any
input z with |z| = n, if z € L, then A outputs a proof P in V of this fact in time at most
f(n,S), where S is the size of the shortest proof of V' of the fact that z € L.

Definition 3.2. We say that V' is automatizable iff it is f(n, S)-automatizable for some
function f that is n@(1) §9M) je. it is possibly to find a proof in time polynomial in the
size of the smallest one.

Theorem 3.3 ([BW99]). Every Davis-Putnam (DLL) or tree-like resolution proof of size
S for a CNF formula F' can be converted to one of width [log, ST + width(F").

Corollary 3.4 ([CEI96, BP98, BW99]). Tree-like resolution is §°(°& ") -automatizable.

Proof. There are only 2'°89(, " ) = n(1°8 ) = §OUs™) clauses of size at most log S.
We can run a breadth-first resolution only deriving clauses of width at most log S. Space
requirements can also be kept down by making the search recursive. O

Theorem 3.5 ([BW99]). Every resolution proof of size S for a CNF formula F' can be
converted to one of width O(y/nlog S) + width(F").

Corollary 3.6. General resolution is 29(vnlog Slogn)_gytomatizable.

Theorem 3.7. Tree-PCR and PCR are $©(°8 ) -automatizable and 20 (V108 Slog ) _gytomatizable,
respectively.

3.2. Interpolation

Let A(z, z) denote a formula over variables  and z, and let B(y, z) denote one over y and
Z.

23
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Definition 3.8. If A(z, z) V B(y, 2) is a tautology then an interpolant C' is a function such
that for any truth assignment « to z,

1. C(a) = 0 implies A(z, o) is a tautology, and

2. C(a) = 1implies B(y, ) is a tautology.

The origin of the term interpolant for such a function can be understood by looking at
the following property of interpolants:

Theorem 3.9 (Craig??). If A(z,2) — B(y, z) is a tautology then there is an interpolant
C with only free variables z such that A(z, z) — C(z) and C(z) — B(y, 2).

We can also give a dual definition of an interpolant for the case when A(z, 2) A B(y, z)
is known to be unsatisfiable. Given any assignment « to variables z, the interpolant says
which one of A(z,a) and B(y, ) is unsatisfiable.

Definition 3.10. If A(z, 2) A B(y, z) is unsatisfiable then an interpolant C' is a function
such that for any truth assignment « to z,

1. C(a) = 0 implies A(z, «) is unsatisfiable, and

2. C(a) = 1 implies B(y, a) is unsatisfiable.

Definition 3.11. Given a propositional proof system V" and a function f : N — N, we say
that V has f-interpolation iff given an unsatisfiable formula of the form A(z, 2) A B(y, 2)
with proof size S in V, there is a circuit of size at most f(.S) computing an interpolant C
for A(z,z) A B(y, 2).

Such a V is said to have feasible interpolation iff f is polynomial. We say that V' has
monotone f-interpolation iff whenever the variables z occur only negatively in B and only
positively in A, the circuit C' is a monotone circuit.

Lemma 3.12 ([BPR97]). If V is automatizable then V' has feasible interpolation.

Proof. Let f be the polynomial function such that V' is f-automatizable and let Ay be the
associated algorithm. Given an unsatisfiable formula A(z, z) A B(y, z) and an assignment
a to z, run Ay oninput A(z, 2) A B(y, z) to get a proof P of size §' < f(S5), where S
is the size of its optimal proof in V. Now run Ay on input A(z,«) for f(S') steps. If it
finds a proof, set C'(a) = 0. Otherwise set C(a) = 1. The key thing to note here is that if
B(y, a) has a satisfying assignment 3, then plugging 3, « into the proof P yields a proof
of size S’ of unsatisfiability of A(z, @) A B(8,a) = A(z, a). O

Theorem 3.13 (Krajicek). Resolution has feasible (monotone) interpolation.

A(x,2) B(y.2) A(x 1) B(y.1)
A%y ax, x,szDz leyzD-z -y Y1EVz Y1 TYe
I3Y1D>'z EVz
1D/1D/z Y1DY2
YIEVZ é le/z
A

Figure 1. Construction interpolant for resolution
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The key idea in the proof of this theorem is that the structure of a resolution proof
allows one to easily decide which clauses cause unsatisfiability under a particular assign-
ment. Consider the refutation tree given in the left portion of figure 1. We simply go
through each possible assignment « to the variables z (in this case only a single variable)
and restrict the proof accordingly to determine which of A(z,«) and B(y, «) is false. For
instance, setting z = 1 in our example simplifies the clause (y1 Vya V—2) to (y1 Vy2). The
clause (z1 V2 Vz) similarly gets simplified to 1. Since the original clause (z1 V3 Vy1 Vy2)
derived from these two clauses now contains variables that appear in neither of its parents,
it can be simplified to (y1 V y2) and we no longer need the clause (1) to derive it. This
simplification goes on until we finally get to the tree on the right hand side of figure 1,
which gives us a refutation of B(y, 1) and says that B(y, z) was the reason the original
formula became unsatisfiable when we set z = 1. Doing this for each assignment to z
gives us a polynomial time way of determining the interpolant completely.

Theorem 3.14 ([P97]). Cutting planes has feasible (monotone) interpolation where the
interpolants are circuits over the real numbers.

Theorem 3.15. Polynomial calculus has feasible interpolation.

3.3. Lower Boundsusing I nterpolation

If we are given a class of circuits for which we know lower bounds and a proof system
whose interpolants are in that circuit class, then we can build a formula whose interpolant
will be a circuit for a hard problem in the circuit class.

Theorem 3.16. If a proof system V' has feasible interpolation and NP ¢ P/poly, then V' is
not polynomially bounded.

Proof. (Sketch) Suppose V' does have feasible interpolation and is also polynomially
bounded with bound p. Consider a formula A(z, 2) A B(y, z) where z represents a CNF
formula, A(z, z) says that assignment z satisfies z, and B(y, z) says that y, of length
p(|z]), is a proof in V' that 2 is unsatisfiable. Feasible interpolation for this formula corre-
sponds to a polynomial size circuit that, for each CNF formula z, tells us which of A(z, z)
and B(y, z) is unsatisfiable. In other words, it is a polysize circuit for deciding satisfia-
bility, implying NP C P/poly (the inequality is strict because P/poly is known to contain
languages that are not in NP).

The way we have stated this proof, it is not clear how one could efficiently encode
z, A(x, z) and B(y, z). As an example, suppose we restrict z to represent clique-coloring
formulas. For a given graph G over n variables,

n(n—

1. zcontains the = U variables zup representing the existence of the corresponding
edges.

2. A(z,z) is the statement that G = G(z) has a k-clique. The variables z;, are TRUE
iff vertex v of G is the i** node of the k-clique. Clauses (\/, z;,) say that some
vertex is chosen as the i** vertex of the k-clique. Clauses (-, V %y V Zyw) SAY
that both « and v are not chosen in the k-clique if there is an edge connecting them.
Clauses (—z;, V ;) say that no vertex is counted twice in the clique. Clauses
(mxs V —24,) SAy that we don’t waste vertices.

3. B(y, 2) is the statement that G(z) is (k — 1)-colorable. The variables y;, are TRUE
iff vertex v is given the i** color in some fixed valid (k — 1)-coloring of G(z).
Clauses (\/; i) say that each vertex gets a color. Clauses (—zuy V ~Yui V Yui)
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say that two vertices that have an edge between them do not get the same color.
Clauses (—y; V yv;) say that a vertex is given only one color.

O

Theorem 3.17. Any proof system V' that has monotone feasible interpolation is not poly-
nomially bounded.

Theorem 3.18. Any cutting planes proofs of clique-coloring formulas are exponential.

Proof. Follows from the result of Pudlak we saw earlier saying that cutting planes has
feasible monotone interpolation. O

3.4. Limitations

Under widely believed assumptions, sufficiently powerful proof systems do not have feasi-
ble interpolation and our technique for proving lower bounds using interpolation becomes
useless for such systems.

Theorem 3.19 ([KP89]). If one-way functions exist, then Frege systems do not have fea-
sible interpolation.

Proof. (Idea) Suppose one has a method of key agreement, i.e. given two people, one with
x and one with y, they can exchange messages and agree on a secret key key(z,y) so that
even listening to their conversation without knowing z or y, it is hard to figure out what
even a single bit of key(z, y) is. Such methods exist if one-way functions do. Going to the
interpolation setting,

1. our common varaibles z will represent the transcript of their conversation,

2. A(z,z) will say that the player with z correctly computed its side of the conversa-
tion and the last bit of key(z,y) is 0, and

3. B(y, z) will say that the player with y correctly computed its side of the conversa-
tion and the last bit of key(z,y) is 1.

We must encode the computation of each player in such a way that the proof system
(Frege in this case), given x and z, can prove what the value of the bit is. We can make the
task easier by extending z with helper extension variables. The actual proof uses Diffie-
Hellman secret key exchange which is as hard as factoring. It requires powering which is
not in TC°. However, the extension variables make it easy enough to prove. O

Theorem 3.20 ([BPR97]). If factoring Blum integers is hard, then any proof system that
can polynomially simulate TC°-Frege, or even AC®-Frege, does not have feasible interpo-
lation.



LECTURE 3. AUTOMATIZABILITY AND INTERPOLATION

CExtended Frege

Figure 2. Theinterpolation line
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LECTURE 4
The Restriction Method

The restriction method is a very useful tool for proving lower bounds in both circuit
complexity and proof complexity. We will motivate this lecture by a result of Hastad whose
original proof used the restriction argument.

Theorem 4.1 ([H86]). The n-bit parity function z; & z2 & ... ® =z, cannot be computed
by unbounded fan-in circuits of size S and depth d unless S > gen’/*

Corollary 4.2. Polynomial-size circuits for parity require Q(logn/loglogn) depth. In
particular, Parity ¢ AC°.

Definition 4.3. Given a set X of Boolean variables, a restriction p is a partial assignment
of values to the variables of X, i.e. p : X — {0,1,*} where p(z;) = = indicates that the
variable z; is not assigned any value by this restriction.

If F'is a function, formula or circuit, we write F'|, for the result of substituting p(z;)
for each z; such that p(z;) # *.

In what follows, we will allow circuits to have unbounded fan-in but restrict connec-
tives to v and —. The depth of a formula F' (circuit C) is then defined as the maximum
number of V’s on any path from an input to an output. Formulas or circuits in standard
CNF or DNF form, for instance, have depth 2.

Restrictions simplify functions, circuits or formulas that we have. Given F' = (\/, z; v
V; —z;), asingle assignment p(z;) = 1 or p(z;) = 0 makes F'|, a constant. Thus the
simplification we obtain by restricting a small set of variables is typically substantially
more than the number of variables we set. To prove a lower bound saying small circuits C
cannot compute a complex function f, we demonstrate a restriction p such that f|, is still
complicated but C|, is so simple that it obviously cannot compute f|,.

4.1. Decision Trees

We begin by introducing the concept of decision trees that we will associate with each gate
of a circuit or each formula appearing in a proof when using the restriction method.

Definition 4.4. A Boolean decision tree T is a binary rooted tree such that

1. Each internal node is labelled by some z;

2. Leaf nodes are labelled 0 or 1

3. Edges out of each internal node are labelled 0 or 1
4. No two nodes on a path have the same variable label

29
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From now on, we will write decision tree to actually mean a Boolean decision tree.
It is easy to see that every root to leaf path (or branch) of a decision tree corresponds to a
restriction p of the input variables. More precisely, for b € {0,1},2 « b isin p iff on that
branch, the out-edge labelled b is taken from the node in the branch labelled ;.

Definition 4.5. A decision tree T' computes a function f iff for every branch B of T', the
restriction p corresponding to branch B has the property that f|, equals the leaf label of
B.

Figurel. Decisiontreefor 1 + z2 + 3 > 2

A Boolean decision tree computing the function f(z) whichis 1if 1 + x> + z3 > 2
and 0 otherwise is shown in figure 1.

Decision trees give a natural way of describing the function they compute as a CNF or
DNF formula. Suppose we have a decision tree of height ¢ computing a function f. Then f
can be described in CNF form with clause size at most ¢ by associating a clause with each
branch with leaf label 0. In a similar fashion, f can also be expressed as a DNF formula
with term size at most ¢ by associating a term with each branch with leaf label 1.

In the other direction, there is a canonical conversion from any DNF formula to a
decision tree computing the same function. We describe this conversion with an example,
F = 2133 V z324 V T4xe. We first create an unlabelled root node. At any stage of the
algorithm, we pick the deepest and leftmost unlabelled leaf node (which would for now be
the root node). We now select the first term of F' from the left that is not falsified by the
assignments in the path from the root to this unlabelled node (in this case, 1 Z3). If there is
no such term, the node is labelled 0 and we continue looking for another unlabelled node.
Otherwise, if this term has ¢ variables that have not appeared yet in the path from the root
to this node (here t = 2), we generate a complete binary tree on the ¢ variables appearing
in this term and make it a subtree of the current node. The leaf that corresponds to the term
is labelled 1 and we continue searching for the next unlabelled leaf node. The tree created
thus for our example is shown in figure 2.

4.2. Restriction Method in Circuit Complexity

We will call an unbounded fan-in circuit of size at most .S and depth at most d an (S, d)-
circuit. For functions f, we will be interested in lower bounds saying that no (.5, d)-circuit
computes f. The key idea will be to find a set R 4(f) of restrictions such that
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Figure 2. Generating canonical decision tree from DNF formula: £1Z3 V 234 V T4Ze

1. For any (S, d)-circuit C, there is a restriction p € Rg 4(f) for which we can as-
sociate a short Boolean decision tree T'(g) with each gate g of C such that T'(g)
computes g|,.

2. Forany p € Rs4(f), f|, cannot be computed by any short decision tree.

Here, by “short” we mean short relative to the number of variables unset by p.

Let us try to find such a set of restrictions for the parity function. We will first note
a few important properties of parity. For any restriction p, Parity|p is either parity or its
negation on the variables that are still not assigned a value. Moreover, one of parity and
its negation must require a decision tree of height at least n. Comparing this with OR of n
bits, any decision tree for OR also requires height n but most restrictions of it are constant
and therefore only need height 0. Parity, in this sense, is a more complex function and
better suited for getting a good lower bound.

To find restrictions for parity, we start at the inputs of the circuit and work upwards
one layer at a time. As we go along, we maintain a current restriction p; and a decision
tree T;(g) for each gate g in the first ¢ layers such that T;(g) computes g|p.

For layer 0, the gates are input variables, p, is empty and all decision trees have height
1. As we move up from layer ¢ — 1 to layer ¢, any new gate h is either a negation or an
OR. If h = —g, we let T;(h) be T;(g) with the labels on its leaves flipped from 0 to 1
and vice versa. The case when h = (g1 V ... V g;) is more complex. It might happen
that h|p; requires tall decision trees even if all T;(g;) are short. We therefore look for a
further small restriction  to the inputs in the hope if simplifying h|p; so that we might get
a shorter tree. We would like to choose one 7 that simultaneously does this for all (possibly
S) unbounded fan-in OR’s in the " layer.

Let’s postpone the details of how we might find such a 7 and first see what we would
do if we did have one. We will set p;11 = p;w. By our assumed properties of =, short
T;+1(h) exists for gates h in this layer. For all gates g below this layer, we will set
Ti+1(9) = Ti(9)|=. We now continue upward in normal fashion and end by setting p = pq4
for the depth d circuit. Since we had been choosing 7’s which guaranteed short trees, the
tree we end up with will be shorter than the number of inputs that p leaves unset. By our
earlier observation about parity, such a decision tree cannot compute parity correctly and
this gets us our lower bound.

All that remains now is to get the restrictions . We won’t give a way of finding such
a m but only show that one exists using the standard probabilistic method. Instead of going
into the exactly details, we here provide a sketch of how the proof works. We show that
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a randomly chosen small « fails to shorten the decision tree for any single OR gate A in
a given layer with probability less than 1/S. Since there are at most S OR gates in any
layer, the probability that there exists an OR gate in this layer which is not shortened by 7
is strictly less than 1, which implies that there must exist a small 7 that works.

The rest of the argument relies on the following result of Hastad:

Lemma 4.6 (Hastad’s Switching Lemma). Let f be a DNF formulainvariablesz1,... ,z,
with terms of size at most ¢. Let Ry, ,, be the set of all restrictions to variables z1, ... ,zp
that leave precisely k£ variables unset. For 7 chosen uniformly at random from Ry, ,,, if
n > 12tk, then the probability that the canonical decision tree for F'|, has height at least
t is less than 2.

Given this lemma, we will maintain trees of height ¢ = log, S. The number of vari-
ables then decreases by a factor of 13t = 13log, S per layer. The height of the tree
will therefore be less than the number of variables if log, S < n/(13log, S)¢, or if
log, S < n'/(4+1) /13 If this happens, our circuit cannot compute parity. We note here
that by being careful in the analysis, we can save one power of log,, S.

4.3. Restriction Method in Proof Complexity

In circuit complexity, for each gate g of a given circuit, we defined decision trees T'(g) that
precisely computed each g|p in the circuit. The obvious analog for proof complexity would
be to define a decision tree for each formula that appears in the proof. However, this cannot
possibly work because every formula in the proof is a tautology and hence computes the
constant function 1.

We get around this problem by using a different notion of decision trees that approxi-
mates each formula so that

1. The bigger the proof needed for tautology, the worse approximation we get.

2. Decision trees are well-behaved under restrictions.

3. Approximation is particularly bad for the goal formula F'. In fact, we try to show
that any short approximating decision tree for F' looks like FAL SE, one for an axiom
looks like TRUE, and one for any formula with a short proof looks like TRUE.

As in the circuit complexity case, we define these decision trees for each subformula
in the proof and tailor decision trees and restrictions to F'. Before we go on to describe
this in detail for the bipartite matching case, we mention some of the main results derived
using this method.

Theorem 4.7 ([A94, PB193, KPW91]). ontoPH P™!'~" requires exponential size AC®-
Frege proofs.

Theorem 4.8 ([A94, BP93]). Counta™* requires exponential size AC°-Frege proofs even
given PH P™+1—=m ag extra axiom schemas.

Theorem 4.9 ([BIKPP94]). C’ountg"Jr1 requires exponential size proofs even given Countgm"'l
as axiom schemas for g # p.

4.3.1. Matching Decision Trees

Consider again the pigeonhole principle PHP™*+1~" from n + 1 pigeons to n holes. Let
P;; be a variable which is TRUE iff pigeon ¢ is mapped to hole j. As before, restrictions
here are partial matchings. Let R¥™ be the set of all partial matching restrictions that
leave exactly k£ holes unset. We will construct a bipartite matching decision tree where
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queries are either the name of a pigeon, in which case the answer is the mapping edge for
that pigeon, or the name of a hole, in which case the answer is the mapping edge for that
hole. We do not repeat any name that was already used higher in the tree and every path
corresponds to a partial matching between pigeons and holes. The leaves are labelled 0 or
1, depending on whether.

Pigeons 1 2 3 &

[9)

Holes a b ¢

P20P3bP4c O P20P4b O P2cP4b
Figure 3. A matching decision tree with path for Pa, P3j, Pa. highlighted

Given a refutation of PHP™t!=", we associate a matching decision tree with each
formula of the proof as follows.

1. T(P;;) is the tree that queries ¢ and has height 1
2. T(—g) is T(g) with leaf labels toggled
3. Togetthetreeforh = (g1 V...V g¢)
(@) Take DNF formula F, = T(G1) V ...V T(gs)
(b) Do canonical conversion of F}, into a matching decision tree.
The canonical conversion into a matching decision tree is essentially the same as canonical
conversion for ordinary decision trees. We go term by term left to right simplifying future
terms based on partial assignments. For each term, we query both endpoints of every
variable in that term.

4.3.2. Ideas for PHP"*+1—=" Lower Bound

The lower bound for PH P™*+1—" we stated in the previous section is proved using the re-
striction method. There is an anolog of Hastad’s switching lemma for canonical conversion
of DNF formulas to matching decision trees. If one has a small proof of the pigeonhole
principle, the corresponding trees can bbe made short. A matching decision tree of height
less than n has all 0’s on its leaves for PH P™*+!'=" hasall 1’s on its leaves for an axiom,
and preserves this property of all 1’s on the leaves underinference rules.

One can add extra axioms and get the same sorts of restrictions and matching decision
trees. To be able to use these extra axioms, one must also prove that they convert to trees
with all 1’s on their leaves. Surprisingly, this follows from Nullstellensatz degree lower
bounds for the extra axioms.
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CExtended Frege

Figure 4. Thefrontier of proof system relationships



LECTURE S
Open Problems

Random Formulas: Random formulas have been shown to be hard for resolution.
An open problem is to show they are hard even for cutting planes and for depth
2 Frege systems. The problem with the latter is that for AC?-Frege, all we know
is the restriction method and restriction families seem to almost certainly falsify
random formulas. The big conjecture, though, is that random formulas are hard for
Frege systems.

Weak Pigeonhole Principle: For PH P™~™, resolution lower bounds are non-trivial
only when m < n?/logn. What happens when m > n, e.g. m = 2"°? A lower
bound in this direction would have applications to bounded arithmetic (existence
of infinitely many primes) and provability of NP ¢ P/poly. In the other direction,
it is known that PH P™™"™ has quasi-polynomial size depth 2 Frege proofs for
m > (14 €)n.

Lovasz-Schriver Proof Systems: These systems are like cutting planes but based on
01-programming. Initial inequalities and goals are like those in cutting planes. In
addition, one can substitute = for 22 anywhere. The division rule, however, is
not present. One can create non-negative degree two polynomials by multiplying
two non-negative linear quantities or squaring any linear quantity. This system
polynomially simulates resolution and can therefore prove PHP. It has feasible
interpolation and hence is not polynomially bounded given NP ¢ P/poly. However,
no hard tautology is known for it. One might try to prove Count3™** is hard for
these systems.

The Bigger Questions:
o Prove lower bounds for AC°-Frege, e.g. Countg"*" is hard.
o Prove lower bounds for TC?-Frege or Frege in general. A candidate for this
could be AB =1 = BA = I for Boolean matrix multiplication.

Proof Search for PCR: Can we build better algorithms to beat the Davis-Putnam/DLL
algorithms in practice by using some PCR ideas?

The reader is referred to [BP98] for a list of more open problems.
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