
Accelerated Adaptive Markov Chain
for Partition Function Computation∗

Stefano Ermon, Carla P. Gomes
Dept. of Computer Science

Cornell University
Ithaca NY 14853, U.S.A.

Ashish Sabharwal
IBM Watson Research Ctr.

Yorktown Heights
NY 10598, U.S.A.

Bart Selman
Dept. of Computer Science

Cornell University
Ithaca NY 14853, U.S.A.

Abstract

We propose a novel Adaptive Markov Chain Monte Carlo algorithm to compute
the partition function. In particular, we show how to accelerate a flat histogram
sampling technique by significantly reducing the number of “null moves” in the
chain, while maintaining asymptotic convergence properties. Our experiments
show that our method converges quickly to highly accurate solutions on a range of
benchmark instances, outperforming other state-of-the-art methods such as IJGP,
TRW, and Gibbs sampling both in run-time and accuracy. We also show how ob-
taining a so-called density of states distribution allows for efficient weight learning
in Markov Logic theories.

1 Introduction

We propose a novel and general method to approximate the partition function of intricate probability
distributions defined over combinatorial spaces. Computing the partition function is a notoriously
hard computational problem. Only a few tractable cases are know. In particular, if the corresponding
graphical model has low treewidth, then the problem can be solved exactly using methods based on
tree decompositions, such as the junction tree algorithm [1]. The partition function for planar graphs
with binary variables and no external field can also be computed in polynomial time [2].

We will consider an adaptive MCMC sampling strategy, inspired by the Wang-Landau method [3],
which is a so-called flat histogram sampling strategy from statistical physics. Given a combinatorial
space and an energy function (for instance, describing the negative log-likelihood of each configu-
ration), a flat histogram method is a sampling strategy based on a Markov Chain that converges to a
steady state where it spends approximately the same amount of time in states with a low density of
configurations (which are usually low energy states) as in states with a high density.

We propose two key improvements to the Wang-Landau method, namely energy saturation
and a focused-random walk component, leading to a new and more efficient algorithm called
FocusedFlatSAT. Energy saturation allows the chain to visit fewer energy levels, and the ran-
dom walk style moves reduce the number of “null moves” in the Markov chain. Both improvements
maintain the same global stationary distribution, while allowing us to go well beyond the domain of
spin glasses where the Wang-Landau method has been traditionally applied.

We demonstrate the effectiveness of our approach by a comparison with state-of-the-art methods to
approximate the partition function or bound it, such as Tree Reweighed Belief Propagation [4], IJGP-
SampleSearch [5], and Gibbs sampling [6]. Our experiments show that our approach outperforms
these approaches in a variety of problem domains, both in terms of accuracy and run-time.

The density of states serves as a rich description of the underlying probabilistic model. Once com-
puted, it can be used to efficiently evaluate the partition function for all parameter settings without

∗Supported by NSF Expeditions in Computing award for Computational Sustainability (grant 0832782).

1

the need for further inference steps — a stark contrast with competing methods for partition function
computation. For instance, in statistical physics applications, we can use it to evaluate the partition
function Z(T) for all values of the temperature T . This level of abstraction can be a fundamental
advantage for machine learning methods: in fact, in a learning problem we can parameterize Z(·)
according to the model parameters that we want to learn from the training data. For example, in
the case of a Markov Logic theory [7, 8] with weights w1, . . . , wK of its K first order formulas,
we can parameterize the partition function as Z(w1, . . . , wK). Upon defining an appropriate energy
function and obtaining the corresponding density of states, we can then use efficient evaluations of
the partition function to search for model parameters that best fit the training data, thus obtaining a
promising new approach to learning in Markov Logic Networks and graphical models.

2 Probabilistic model and the partition function

We focus on intricate probability distributions defined over a set of configurations, i.e., assignments
to a set of N discrete variables {x1, . . . , xN}, assumed here to be Boolean for simplicity. The
probability distribution is specified through a set of combinatorial features or constraints over these
variables. Such constraints can be either hard or soft, with the i-th soft constraint Ci being associated
with a weight wi. Let χi(x) = 1 if a configuration x violates Ci, and 0 otherwise. The probability
Pw(x) of x is defined as 0 if x violates any hard constraint, and as

Pw(x) =
1

Z(w)
exp

(
−
∑

Ci∈Csoft

wiχi(x)

)
(1)

otherwise, where Csoft is the set of soft constraints. The partition function, Z(w), is simply the
normalization constant for this probability distribution, and is given by:

Z(w) =
∑

x∈Xhard

exp

(
−
∑

Ci∈Csoft

wiχi(x)

)
(2)

where Xhard ⊆ {0, 1}N is the set of configurations satisfying all hard constraints. Note that as
wi → ∞, the soft constraint Ci effectively becomes a hard constraint. This factored representation
is closely related to a graphical model where we use weighted Boolean formulas to specify clique
potentials. This is a natural framework for combining purely logical and probabilistic inference,
used for example to define grounded Markov Logic Networks [8, 9].

The partition function is a very important quantity but computing it is a well-known computational
challenge, which we propose to address by employing the “density of states” method to be discussed
shortly. We will compare our approach against several state-of-the-art methods available for com-
puting the partition function or obtaining bounds on it. Wainwright et al. [4], for example, proposed
a variational method known as tree re-weighting (TRW) to obtain bounds on the partition function
of graphical models. Unlike standard Belief Propagation schemes which are based on Bethe free en-
ergies [10], the TRW approach uses a tree-reweighted (TRW) free energy which consists of a linear
combination of free energies defined on spanning trees of the model. Using convexity arguments it
is then possible to obtain upper bounds on various quantities, such as the partition function.

Based on iterated join-graph propagation, IJGP-SampleSearch [5] is a popular solver for the proba-
bility of evidence problem (i.e., partition function computation with a subset of “evidence” variables
fixed) for general graphical models. This method is based on an importance sampling scheme which
is augmented with systematic constraint-based backtracking search. An alternative approach is to
use Gibbs sampling to estimate the partition function by estimating, using sample average, a se-
quence of multipliers that correspond to the ratios of the partition function evaluated at different
weight levels [6]. Lastly, the partition function for planar graphs where all variables are binary and
have only pairwise interactions (i.e., the zero external field case) can be calculated exactly in poly-
nomial time [2]. Although we are interested in algorithms for the general (intractable) case, we used
the software associated with this approach to obtain the ground truth for planar graphs and evaluate
the accuracy of the estimates obtained by other methods.

2

3 Density of states

Our approach for computing the partition function is based on solving the density of states problem.
Given a combinatorial space such as the one defined earlier and an energy function E : {0, 1}N →
R, the density of states (DOS) n is a function n : range(E) → N that maps energy levels to the
number of configurations with that energy, i.e., n(k) = |{σ ∈ {0, 1}N | E(σ) = k}|. In our context,
we are interested in computing the number of configurations that satisfy certain properties that are
specified using an appropriate energy function. For instance, we might define the energy E(σ) of a
configuration σ to be the number of hard constraints that are violated by σ. Or we may use the sum
of the weights of the violated soft constraints.

Once we are able to compute the full density of states, i.e., the number of configurations at each
possible energy level, it is straightforward to evaluate the partition function Z(w) for any weight
vector w, by summing up terms of the form n(i) exp(−E(i)), where E(i) denotes the energy of
every configuration in state i. This is the method we use in this work for estimating the partition
function. More complex energy functions may be defined for other related tasks, such as weight
learning, i.e., given some training data x ∈ X = {0, 1}N , computing arg maxw Pw(x) where
Pw(x) is given by Equation (1). Here we can define the energy E(σ) to be w · `, where ` =
(`1, . . . , `M) gives the number of constraints of weight wi violated by σ. Our focus in the rest of
the paper will thus be on computing the density of states efficiently.

3.1 The MCMCFlatSAT algorithm

MCMCFlatSAT [11] is an Adaptive Markov Chain Monte Carlo (adaptive MCMC) method for
computing the density of states for combinatorial problems, inspired by the Wang-Landau algorithm
[3] from statistical physics. Interestingly, this algorithm does not make any assumption about the
form or semantics of the energy. At least in principle, the only thing it needs is a partitioning of the
state space, where the “energy” just provides an index over the subsets that compose the partition.

The algorithm is based on the flat histogram idea and works by trying to construct a reversible
Markov Chain on the space {0, 1}N of all configurations such that the steady state probability of a
configuration σ is inversely proportional to the density of states n(E(σ)). In this way, the stationary
distribution is such that all the energy levels are visited equally often (i.e., when we count the visits
to each energy level, we see a flat visit histogram). Specifically, we define a Markov Chain with the
following transition probability:

pσ→σ′ =

{
1
N min

{
1, n(E(σ))

n(E(σ′))

}
dH(σ, σ′) = 1

0 dH(σ, σ′) > 1
(3)

where dH(σ, σ′) is the Hamming distance between σ and σ′. The probability of a self-loop pσ→σ

is given by the normalization constraint pσ→σ +
∑

σ′|dH(σ,σ′)=1 pσ→σ′ = 1. The detailed balance
equation P (σ)pσ→σ′ = P (σ′)pσ′→σ is satisfied by P (σ) ∝ 1/n(E(σ)). This means1 that the
Markov Chain will reach a stationary probability distribution P (regardless of the initial state) such
that the probability of a configuration σ with energy E = E(σ) is inversely proportional to the num-
ber of configurations with energy E. This leads to an asymptotically flat histogram of the energies
of the states visited because P (E) =

∑
σ:E(σ)=E P (σ) ∝ n(E) 1

n(E) = 1 (i.e., independent of E).

Since the density of states is not known a priori, and computing it is precisely the goal of the algo-
rithm, it is not possible to construct directly a random walk with transition probability (3). However
it is possible to start with an initial guess g(·) for n(·) and keep updating this estimate g(·) in a
systematic way to produce a flat energy histogram and simultaneously make the estimate g(E) con-
verge to the true value n(E) for every energy level E. The estimate is adjusted using a modification
factor F which controls the trade-off between the convergence rate of the algorithm and its accuracy
(large initial values of F lead to fast convergence to a rather inaccurate solution). For completeness,
we provide the pseudo-code as Algorithm 1; see [11] for details.

1The chain is finite, irreducible, and aperiodic, therefore ergodic.

3

Algorithm 1 MCMCFlatSAT algorithm to compute the density of states
1: Start with a guess g(E) = 1 for all E = 1, . . . , m
2: Initialize H(E) = 0 for all E = 1, . . . , m
3: Start with a modification factor F = F0 = 1.5
4: repeat
5: Randomly pick a configuration σ
6: repeat
7: Generate a new configuration σ′ (by flipping a variable)
8: Let E = E(σ) and E′ = E(σ′) (saturated energies)

9: Set σ = σ′ with probability min
n

1, g(E)
g(E′)

o
(move acceptance/rejection step)

10: Let Ec = E(σ) be the current energy level
11: Adjust the density g(Ec) = g(Ec)× F
12: Update visit histogram H(Ec) = H(Ec) + 1
13: until H is flat (all the values are at least 90% of the maximum value)
14: Reduce F , F ←

√
F

15: Reset the visit histogram H
16: until F is close enough to 1
17: Normalize g so that

P
E g(E) = 2N

18: return g as estimate of n

4 FocusedFlatSAT: Efficient computation of density of states

We propose two crucial improvements to MCMCFlatSAT, namely energy saturation and
the introduction of a focused-random walk component, leading to a new algorithm called
FocusedFlatSAT. As we will see in Table 1, FocusedFlatSAT provides the same accuracy as
MCMCFlatSAT but is about 10 times faster on that benchmark. Moreover, our results for the Ising
model (described below) in Figure 2 demonstrate that FocusedFlatSAT scales much better.

Energy saturation. The time needed for each iteration of MCMCFlatSAT to converge is signif-
icantly affected by the number of different non-empty energy levels (buckets). In many cases, the
weights defining the probability distribution Pw(x) are all positive (i.e., there is an incentive to sat-
isfy the constraints), and as an effect of the exponential discounting in Equation (1), configurations
that violate a large number of constraints have a negligible contribution to the sum defining the par-
tition function Z. We therefore define a new saturated energy function E′(σ) = min{E(σ),K},
where K is a user-defined parameter. For the positive weights case, the partition function Z ′ asso-
ciated with the saturated energy function is a guaranteed upper bound on the original Z, for any K.
When all constraints are hard, Z ′ = Z for any value K ≥ 1 because only the first energy bucket
matters. In general, when soft constraints are present, the bound gets tighter as K increases, and we
can obtain theoretical worst-case error bounds when K is chosen to be a percentile of the energy
distribution (e.g., saturation at median energy yields a 2x bound). In our experiments, we set K to be
the average number of constraints violated by a random configuration, and we found that the error
introduced by the saturation is negligible compared to other inherent approximations in density of
states estimation. Intuitively, this is because the states where the probability is concentrated turn out
to typically have a much lower energy than K, and thus an exponentially larger contribution to Z.
Furthermore, energy saturation preserves the connectivity of the chain.

Focused Random Walk. Both in the original Wang-Landau method and in MCMCFlatSAT, new
configurations are generated by flipping a variable selected uniformly at random [3, 11]. Let us
call this configuration selection distribution the proposal distribution, and let Tσ→σ′ denote the
probability of generating a σ′ from this distribution while in configuration σ. In the Wang-Landau
algorithm, proposed configurations are then rejected with a probability that depends on the density
of states of the respective energy levels. Move rejections obviously lengthen the mixing time of
the underlying Markov Chain. We introduce here a novel proposal distribution that significantly
reduces the number of move rejections, resulting in much faster convergence rates. It is inspired by
local search SAT solvers [12] and is especially critical for the class of highly combinatorial energy
functions we consider in this work. We note that if the acceptance probability is taken to be

min
{

1,
n(E(σ))Tσ′→σ

n(E(σ′))Tσ→σ′

}

4

0

500000

1000000

1500000

2000000

2500000

3000000

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

N
u

m
b

e
r

o
f

m
o

ve
s

Energy level

MCMCFlatSAT

Acc. up

Acc. same

Acc. down

Rej. up

Rej. same

Rej. down 0

200000

400000

600000

800000

1000000

1200000

1400000

1

2
3

4
5

6
7

8
9

1
1

1

1
3

3

1
5

5

1
7

7

1
9

9

2
2

1

2
4

3

2
6

5

2
8

7

3
0

9

3
3

1

3
5

3

3
7

5

N
u

m
b

e
r

o
f

m
o

ve
s

Energy level

FocusedFlatSAT

Acc. up

Acc. same

Acc. down

Rej. up

Rej. same

Rej. down

Figure 1: Histograms depicting the number of proposed moves accepted and rejected. Left: MCM-
CFlatSAT. Right: FocusedFlatSAT. See PDF for color version.

the properties of the steady state distribution are preserved as long as the proposal distribution is
such that the ergodicity property is maintained.

In order to understand the motivation behind the new proposal distribution, consider the move accep-
tance/rejection histogram shown in the left panel of Figure 1. For the instance under consideration,
MCMCFlatSAT converged to a flat histogram after having visited each of the 385 energy levels (on
x-axis) roughly 2.6M times. Each colored region shows the cumulative number of moves (on y-axis)
accepted or rejected from each energy level (on x-axis) to another configuration with a higher, equal,
or lower energy level, resp. This gives six possible move types, and the histogram shows how often
is each taken at any energy level. Most importantly, notice that at low energy levels, a vast majority
of the moves were proposed to a higher energy level and were rejected by the algorithm (shown as
the dominating purple region). This is an indirect consequence of the fact that in such instances, in
the low energy regime, the density of states increases drastically as the energy level is increases, i.e.,
g(E′) � g(E) when E′ > E. As a result, most of the proposed moves are to higher energy levels
and are in turn rejected by the algorithm in the move acceptance/rejection step discussed above.

In order to address this issue, we propose to modify the proposal distribution in a way that increases
the chance of proposing moves to the same or lower energy levels, despite the fact that there are
relatively few such moves. Inspired by local search SAT solvers, we enhance MCMCFlatSAT with
a focused random walk component that gives preference to selecting variables to flip from violated
constraints (if any), thereby introducing an indirect bias towards lower energy states. Specifically,
if the given configuration σ is a satisfying assignment, pick a variable uniformly at random to be
flipped (thus Tσ→σ′ = 1/N when the Hamming distance dH(σ, σ′) = 1, zero otherwise). If σ is
not a solution, then with probability p a variable to be flipped is chosen uniformly at random from
a randomly chosen violated constraint, and with probability 1− p a variable is chosen uniformly at
random. With this approach, when σ is not solution and σ and σ′ differ only on the i-th variable,

Tσ→σ′ = (1− p)
1
N

+ p

∑
c∈C|i∈c χc(σ) · 1/|c|∑

c∈C χc(σ)

where χc(σ) = 1 iff σ violates constraint c and |c| denotes the number of variables in constraint c.
With this proposal distribution we ensure that for all 1 > p ≥ 0 whenever Tσ→σ′ > 0, we also have
Tσ′→σ > 0. Moreover, the connectivity of the Markov Chain is preserved (since we don’t remove
any edge from the original Markov Chain). We therefore have the following result:

Proposition 1 For all p ∈ [0, 1), the Markov Chain with proposal distribution Tσ→σ′ defined above
is irreducible and aperiodic. Therefore it has a unique stationary distribution, given by 1/n(E(σ)).

The right panel of Figure 1 shows the move acceptance/rejection histogram when FocusedFlatSAT
is used, i.e., with the above proposal distribution. The same instance now needs under 1.2M visits
per energy level for the method to converge. Moreover, the number of rejected moves (shown in
purple and green) in low energy states is significantly fewer than the dominating purple region in the
left panel. This allows the Markov Chain to move more freely in the space and to converge faster.

Figure 2 shows a runtime comparison of FocusedFlatSAT against MCMCFlatSAT on n × n Ising
models (details to be discussed in Section 5). As we see, incorporating energy saturation reduces the
time to convergence (while achieving the same level of accuracy), and using focused random walk
moves further decreases the convergence time, especially as n increases.

5

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40

Ti
m

e
 (

s)

Grid size n

MCMCFlatSAT

MCMCFlatSAT+Saturation

FocusedFlatSAT

Figure 2: Runtime comparison on ferromagnetic Ising models on square lattices of size n× n.

Table 1: Comparison with model counters; only hard constraints. Runtime is in seconds.
Instance n m Exact # FocusedFlatSat MCMC-FlatSat SampleCount SampleMiniSAT

Models Time Models Time Models Time Models Time

2bitmax 6 252 766 2.10× 1029 1.91× 1029 156 1.96× 1029 1863 ≥ 2.40× 1028 29 2.08× 1029 345
wff-3-3.5 150 525 1.40× 1014 1.43× 1014 20 1.34× 1014 393 ≥ 1.60× 1013 145 1.60× 1013 240
wff-3.1.5 100 150 1.80× 1021 1.86× 1021 1 1.83× 1021 21 ≥ 1.00× 1020 240 1.58× 1021 128
wff-4-5.0 100 500 9.31× 1016 5 8.64× 1016 189 ≥ 8.00× 1015 120 1.09× 1017 191
ls8-norm 301 1603 5.40× 1011 5.78× 1011 231 5.93× 1011 2693 ≥ 3.10× 1010 1140 2.22× 1011 168

5 Experimental evaluation

We compare FocusedFlatSAT against several state-of-the-art methods for computing an estimate
of or bound on the partition function.2 An evaluation such as this is inherently challenging as the
ground truth is very hard to obtain and computational bounds can be orders of magnitude off from
the truth, making a comparison of estimates not very meaningful. We therefore propose to evaluate
the methods on either small instances whose ground truth can be evaluated by “brute force,” or larger
instances whose ground truth (or bounds on it) can be computed analytically or through other tools
such as efficient model counters. We also consider planar cases for which a specialized polynomial
time exact algorithm is available. Efficient methods for handling instances of small treewidth are
also well known; here we push the boundaries to instances of relatively higher treewidth.

For partition function evaluation, we compare against the tree re-weighting (TRW) variational
method for upper bounds, the iterated join-graph propagation (IJGP), and Gibbs sampling; see Sec-
tion 2 for a very brief discussion of these approaches. For weight learning, we compare against
the Alchemy system. Unless otherwise specified, the energy function used is always the number of
violated constraints, and we use a 50% ratio of random moves (p = 0.5). The algorithm is run for
20 iterations, with an initial modification factor F0 = 1.5. The experiments were conducted on a
16-core 2.4 GHz Intel Xeon machine with 32 GB memory, running RedHat Linux.

Hard constraints. First, consider models with only hard constraints, which define a uniform mea-
sure on the set of satisfying assignments. In this case, the problem of computing the partition func-
tion is equivalent to standard model counting. We compare the performance of FocusedFlatSAT
with MCMC-FlatSat and with two state-of-the-art approximate model counters: SampleCount
[13] and SampleMiniSATExact [14]. The instances used are taken from earlier work [11]. The re-
sults in Table 1 show that FocusedFlatSAT almost always obtains much more accurate solution
counts, and is often significantly faster (about an order of magnitude faster than MCMC-FlatSat).

Soft Constraints. We consider Ising Models defined on an n × n square lattice where P (σ) =∑
σ exp(−E(σ)) with E(σ) =

∑
(i,j) wijI[σi 6= σj]. Here I is the indicator function. This

imposes a penalty wij if spins σi and σj are not aligned. We consider a ferromagnetic case where
wij = w > 0 for all edges, and a frustrated case with a mixture of positive and negative interactions.

The partition function for these planar models is computable with a specialized polynomial time
algorithm, as long as there is no external magnetic field [2]. In Figure 3, we compare the true value
of the partition function Z∗ with the estimate obtained using FocusedFlatSAT and with the upper

2Benchmark instances available online at http://www.cs.cornell.edu/∼ermonste

6

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

Lo
g 1

0
(Z

)-
Lo

g 1
0
(Z

*)

weight w

FocusedFlatSAT

TRW

-50

0

50

100

150

200

250

300

0 1 2 3 4 5 6

Lo
g 1

0
(Z

)-
Lo

g 1
0
(Z

*)

weight w

FocusedFlatSAT

TRW

Figure 3: Error in log10(Z). Left: 40× 40 ferromagnetic grid. Right: 32× 32 spin glass grid.

Table 2: Log partition function for weighted formulas.
Instance n m Weight log10 Z(w) FocusedFlatSat IJGP-SampleSearch Gibbs

log10 Z(w) Time log10 Z(w) Time log10 Z(w) Time
grid32x32 1024 3968 1 16.0920 16.0964 628 14.4330 600 15.4856 651
grid32x32 1024 3968 1 16.0920 16.0964 628 13.8980 2000
grid40x40 1600 6240 1 23.5434 23.4844 1522 15.9386 2000 22.3125 1650
2bitmax6 252 766 5 > 29.3222 30.4373 360 12.0526 600 25.1274 732
2bitmax6 252 766 5 > 29.3222 30.4373 360 12.3802 2000
wff.100.150 100 150 5 > 21.2553 21.3187 5 21.3373 200 21.3992 40
wff.100.150 100 150 8 > 21.2553 21.2551 5 21.2694 200 21.3107 40
ls8-normalized 301 1603 3 > 11.7324 17.6655 589 16.5458 600 8.6825 708
ls8-normalized 301 1603 6 > 11.7324 11.7974 589 -2.3987 600 -17.356 770
ls8-normalized 301 1603 6 > 11.7324 11.7974 589 -1.7459 1200
ls8-normalized 301 1603 6 > 11.7324 11.7974 589 -1.8578 2000
ls8-simplified-2 172 673 6 > 4.3083 4.3379 100 -1.8305 1200 2.8516 300
ls8-simplified-4 119 410 6 > 2.2479 2.3399 63 2.7037 1200 -6.7132 174
ls8-simplified-5 83 231 6 > 1.3424 1.3880 40 1.3688 600 1.3420 51

bound given by TRW (which is generally much faster but inaccurate), for a range of w values. What
is plotted is the accuracy, log Z− log Z∗. We see that the estimate provided by FocusedFlatSAT
is very accurate throughout the range of w values. For the ferromagnetic model, the bounds obtained
by TRW, on the other hand, are tight only when the weights are sufficiently high, when essentially
only the two ground states of energy zero matter. On spin glasses, where computing ground states is
itself an intractable problem, TRW is unsurprisingly inaccurate even in the high weights regime. The
consistent accuracy of FocusedFlatSAT here is a strong indication that the method is accurately
computing the density of most of the underlying states. This is because, as the weight w changes,
the value of the partition function is dominated by the contributions of a different set of states.

Table 2 (top) shows a comparison with IJGP-SampleSearch and Gibbs Sampling for the ferromag-
netic case with w = 1. Here FocusedFlatSAT provides the most accurate estimates, even
when other methods are given a longer running time. E.g., IJGP is two orders of magnitude off
for the 32 × 32 grid.3 Results with other weights are similar but omitted due to limited space.
FocusedFlatSAT also significantly outperforms IJGP and Gibbs sampling in accuracy on the
circuit synthesis instance 2bitmax6. All methods perform well on randomly generated 3-SAT in-
stances, but FocusedFlatSAT is much faster.

As another test case, we use formulas from a previously used model counting benchmark involving
n × n Latin Square completion [11], and add a weight w to each constraint. Since these instances
have high treewidth, are non-planar, and beyond the reach of direct enumeration, we don’t have
ground truth for this benchmark. However, we are able to provide a lower bound,4 which is given
by the number of models of the original formula. Our results are reported in Table 2. Our lower
bound indicates that the estimate given by FocusedFlatSAT is more accurate, even when other
methods are given a longer running time. As the last 3 lines of the table show, IJGP and Gibbs
sampling improve in performance as the problem is simplified more and more, by fixing the values
of 2, 4, or 5 “cells” and simplifying the instance. Nonetheless, on the un-simplified ls8-normalized
with weight 6, both IJGP and Gibbs sampling underestimate by over 12 orders of magnitude.

3On smaller instances with limited treewidth, IJGP-SampleSearch quickly provides good estimates.
4The upper bound provided by TRW is very loose on this benchmark (possibly because of the conversion

to a pairwise field) and not reported.

7

Table 3: Weight learning: likelihood of the training data x computed using learned weights.
Type Training Data Optimal FocusedFlatSAT Alchemy

Likelihood (O) Accuracy (F/O) Accuracy (A/O)
ThreeChain(30) x =data-30-1 4.09× 10−27 1.0 0.08

x =data-30-2 9.31× 10−10 1.0 0.93
FourChain(5) x =dataFC-5-1 5.77× 10−6 1.0 0.61

x =dataFC-5-2 3.84× 10−3 1.0 0.000097
HChain(10) x =dataH-10-1 1.19× 10−9 1.0 0.87

x =dataH-10-2 2.62× 10−9 1.0 0.53
SocialNetwork(5) x =data-SN-1 2.98× 10−8 1.0 0.69

x =data-SN-2 2.44× 10−9 1.0 0.2

Weight learning. Suppose the set of soft constraints Csoft is composed of M disjoint sets of con-
straints {Si}M

i=1, where all the constraints c ∈ Si have the same weight wi that we wish to learn
from data (for instance, these constraints can all be groundings of the same first order formula in
Markov Logic [8]). Let us assume for simplicity that there are no hard constraints. The probability
Pw(x) can be parameterized by a weight vector w = (w1, . . . , wM). The key observation is that
the partition function can be written as Z(w) =

∑
`1

∑
`2

. . .
∑

`M
n(`1, . . . , `M) exp (−w · `),

where n(`1, . . . , `M) gives the number of configurations that violate `i constraints of type Si for
i = 1, . . . ,M . This function n(`1, . . . , `M) is precisely the density of states required to compute
Z(w) for all values of w, without additional inference steps.

Given training data x ∈ {0, 1}N , the problem of weight learning is that of finding arg maxw Pw(x)
where Pw(x) is given by Eqn. (1). Once we compute n(`1, . . . , `M) using FocusedFlatSAT,
we can efficiently evaluate Z(w), and therefore Pw(x), as a function of the parameters w =
(w1, . . . , wM). Using this efficient evaluation as a black-box, we can solve the weight learning
problem using a numerical optimization package with no additional inference steps required.5

We evaluate this learning method on relatively simple instances on which commonly used software
such as Alchemy can be a few orders of magnitude off from the optimal likelihood of the training
data. Specifically, Table 3 compares the likelihood of the training data under the weights learned by
FocusedFlatSAT and by Generative Weight Learning [7], as implemented in Alchemy, for four
types of Markov Logic theories. The Optimal Likelihood value is obtained using a partition function
computed either by direct enumeration or using analytic results for the synthetic instances.

The instance ThreeChain(K) is a grounding of the following first order formulas ∀xP (x) ⇒
Q(x),∀xQ(x) ⇒ R(x),∀xR(x) ⇒ P (x) while FourChain(K) is a similar chain of 4 implica-
tions. The instance HChain(K) is a grounding of ∀xP (x)∧Q(x) ⇒ R(x),∀xR(x) ⇒ P (x) where
x ∈ {a1, a2, . . . , aK}. The instance SocialNetwork(K) (from the Alchemy Tutorial) is a ground-
ing of the following first order formulas where x, y ∈ {a1, a2, . . . , aK}: ∀x ∀y Friend(x, y) ⇒
(Smokes(x) ⇔ Smokes(y)), ∀x Smokes(x) ⇒ Cancer(x).

Table 3 shows the accuracy of FocusedFlatSAT and Alchemy for the weight learning task, as
measured by the resulting likelihood of observing the data in the learned model, which we are trying
to maximize. The accuracy is measured as the ratio of the optimal likelihood (O) and the likelihood
in the learned model (F and A, resp.). In these instances, FocusedFlatSAT always matches the
optimal likelihood up to two digits of precision, while Alchemy can underestimate it by several
orders of magnitude, e.g., by over 4 orders in the case of FourChain(5).

6 Conclusion

We introduced FocusedFlatSAT, a Markov Chain Monte Carlo technique based on the flat his-
togram method with a random walk style component to estimate the partition function from the
density of states. We demonstrated the effectiveness of our approach on several types of problems.
Our method outperforms the current state-of-the-art techniques on a variety of instances, at times
by several orders of magnitude. Moreover, from the density of states we can obtain directly the
partition function Z(w) as a function of the model parameters w. We show an application of this
property to weight learning in Markov Logic Networks.

5Storing the full density function n(`1, . . . , `M) of course requires space (and hence time) that is exponen-
tial in M . One must use a relatively coarse partitioning of the state space for scalability when M is large.

8

References
[1] Martin J Wainwright and Michael I Jordan. Graphical Models, Exponential Families, and Variational

Inference. Now Publishers Inc., Hanover, MA, USA, 2008.

[2] N.N. Schraudolph and D. Kamenetsky. Efficient exact inference in planar Ising models. In Proc. of
NIPS-08, 2008.

[3] F. Wang and DP Landau. Efficient, multiple-range random walk algorithm to calculate the density of
states. Physical Review Letters, 86(10):2050–2053, 2001.

[4] M.J. Wainwright, T.S. Jaakkola, and A.S. Willsky. A new class of upper bounds on the log partition
function. Information Theory, IEEE Transactions on, 51(7):2313–2335, 2005.

[5] Vibhav Gogate and Rina Dechter. SampleSearch: A Scheme that Searches for Consistent Samples. Jour-
nal of Machine Learning Research, 2:147–154, 2007.

[6] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: an approach to approximate
counting and integration, pages 482–520. PWS Publishing Co., Boston, MA, USA, 1997.

[7] P. Domingos, S. Kok, H. Poon, M. Richardson, and P. Singla. Unifying logical and statistical ai. In Proc.
of AAAI-06, pages 2–7, Boston, Massachusetts, 2006. AAAI Press.

[8] M. Richardson and P. Domingos. Markov logic networks. Machine Learning, 62(1):107–136, 2006.

[9] H. Poon and P. Domingos. Sound and efficient inference with probabilistic and deterministic dependen-
cies. In Proc. of AAAI-06, pages 458–463, 2006.

[10] J.S. Yedidia, W.T. Freeman, and Y. Weiss. Constructing free-energy approximations and generalized
belief propagation algorithms. Information Theory, IEEE Transactions on, 51(7):2282–2312, 2005.

[11] S. Ermon, C. Gomes, and B. Selman. Computing the density of states of Boolean formulas. In Proc. of
CP-2010, 2010.

[12] B. Selman, H.A. Kautz, and B. Cohen. Local search strategies for satisfiability testing. In DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 1996.

[13] C.P. Gomes, J. Hoffmann, A. Sabharwal, and B. Selman. From sampling to model counting. In Proc. of
IJCAI-07, 2007.

[14] V. Gogate and R. Dechter. Approximate counting by sampling the backtrack-free search space. In Proc.
of AAAI-07, pages 198–203, 2007.

9

