Counting CSP Solutions Using Generalized XOR Constraints

Carla P. Gomes and Willem-Jan van Hoeve and Ashish Sabharwal and Bart Selman
Department of Computer Science
Cornell University, Ithaca NY 14853-7501, U.S.A.
{gomes, vanhoeve, sabhar,selman}@cs.cornell.edu

Abstract

We present a general framework for determining the number
of solutions of constraint satisfaction problems (CSPs) with a
high precision. Our first strategy uses additional binary vari-
ables for the CSP, and applies an XOR or parity constraint
based method introduced previously for Boolean satisfiabil-
ity (SAT) problems. In the CSP framework, in addition to the
naive individual filtering of XOR constraints used in SAT, we
are able to apply a global domain filtering algorithm by view-
ing these constraints as a collection of linear equalities over
the field of two elements. Our most promising strategy ex-
tends this approach further to larger domains, and applies the
so-called generalized XOR constraints directly to CSP vari-
ables. This allows us to reap the benefits of the compact and
structured representation that CSPs offer. We demonstrate
the effectiveness of our counting framework through experi-
mental comparisons with the solution enumeration approach
(which, we believe, is the current best generic solution count-
ing method for CSPs), and with solution counting in the con-
text of SAT and integer programming.

Introduction

In recent years there has been a significant interest in count-
ing the number of solutions to combinatorial problems.
Computationally speaking, counting the number of solutions
is, both in theory and practice, considerably harder than find-
ing a single solution or proving infeasibility. On the other
hand, the ability to count solutions efficiently would open
up a wide range of new applications, in particular those in-
volving probabilistic reasoning. These promising new ap-
plication areas have lead to a continued interest in the search
for efficient solutions to this challenging problem.

Most of the recent work on counting the number of so-
lutions has focused on propositional formulations of the
problem domains under consideration, and builds upon the
dramatic advances in Boolean satisfiability (SAT) research.
While this is a promising direction, by propositionalizing
domains one potentially loses a significant amount of ex-
plicit domain structure. It is therefore natural to consider
more general counting techniques that apply directly to more
structured constraint satisfaction problems (CSPs).

Copyright (© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

When looking at the state of the art in counting solutions
for CSPs, brute-force enumeration appears the best available
generic technique. More specialized methods have been
developed for binary CSPs (Angelsmark & Jonsson 2003;
Kask, Dechter, & Gogate 2004), which count blocks of so-
Iutions at a time in a manner similar to some of the complete
SAT model counters, such as Relsat (Bayardo Jr. & Pe-
houshek 2000) and Cachet (Sang et al. 2004).

In this paper, we propose a new generic counting tech-
nique for CSPs, building upon on the so-called XOR stream-
lining technique proposed recently for counting the number
of solutions of SAT instances (Gomes, Sabharwal, & Selman
2006). In this approach, a number of random XOR or parity
constraints are added to the given SAT instance, and then
a state-of-the-art SAT solver is used to check whether the
augmented formula is still satisfiable. Depending on the out-
come of this process for a few iterations, one obtains bounds
on the solution count of the original SAT instance, which
hold with provable high-confidence correctness guarantees.
Intuitively, this method exploits the fact that the more solu-
tions the original problem instance has, the more additional
XOR constraints can be added to it before the problem be-
comes unsatisfiable.

To extend this framework to CSP formulations, we intro-
duce two new approaches. In our first approach, we cre-
ate a binary variable for each CSP variable-value pair, and
add random XORs on these variables. We study two vari-
ations of this strategy: individual XOR filtering, using the
‘watched literals’ idea from SAT solvers, and global filter-
ing. Global filtering is performed using a Gaussian elimina-
tion like method, which is particularly well-suited to handle
XOR constraints, and guarantees complete global filtering.

In our second approach, we use a generalized version of
XOR constraints directly on the CSP variables. We define
generalized XORs as the analogue of the standard Boolean
XORs for variables with arbitrary finite domain size. Let
d denote the largest domain size. A generalized XOR con-
straint on a set of variables is satisfied when the sum mod-
ulo d of the values of the variables in the constraint equals
a given “right hand side” value between 0 and d — 1. With
d = 2 this corresponds to the standard Boolean XOR con-
straint. To handle such constraints effectively, we employ a
complete domain filtering algorithm based on dynamic pro-
gramming, extending a technique proposed by Trick (2003).

We prove that both these approaches can be used to pro-
vide bounds on the solution counts of CSPs with similar
guarantees as standard XORs have been shown to provide
for SAT instances (Gomes, Sabharwal, & Selman 2006).

Our experiments reveal that our XOR framework for CSPs
works quite well. We consider various hard combinatorial
problems, focusing on those that have natural representa-
tions as general CSPs or integer programs, though not nec-
essarily a natural propositional SAT formulation. For exam-
ple, games120 is a challenging counting problem based on
graph coloring. Using an integer programming formulation
translated into a pseudo-Boolean formula, Morgado et al.
(2006) recently proposed a counter, which on this problem
found 1.1 x 10° solutions in half an hour. They further con-
sidered a solution count preserving translation to a Boolean
formula, originally due to Bailleux, Boufkhad, & Roussel
(2006), on which the exact SAT model counter Relsat (Ba-
yardo Jr. & Pehoushek 2000) found 1.4 x 10° solutions in
half an hour. In contrast, our method using generalized XOR
constraints improves this lower bound to 4.5 x 10*? (with
99% correctness confidence) in under a minute.

We also experimented with Spatially Balanced Latin
Square problems. Here we are able to count solutions for
squares of order 17 (our method found 1058 solutions in 14
minutes, again with 99% correctness confidence). A SAT-
based approach to this problem, which involves pairwise
distance computations, is arguably infeasible because the
SAT encoding is too large; an integer programming based
approach also does not find any solutions at all. In fact,
even the CSP solver we considered did not find a single so-
Iution for this order of spatially balanced Latin squares on
the original formulation, but the problem became feasible
after adding XOR constraints. This shows that the XOR ap-
proach can even work as a domain-independent streamliner
for some problems.

These results highlight the effectiveness of our approach,
especially in structured domains naturally suited for con-
straint programming. The good performance of our filtering
algorithms based on Gaussian elimination and dynamic pro-
gramming suggest that there is potential for incorporating
similar propagation techniques into SAT-based XOR count-
ing approaches as well.

Preliminaries

Let x be a variable. The domain of x, denoted by D(x), is a
finite set of elements (also called domain values) that can be
assigned to x. A constraint C on a finite set of variables V =
{x1,x2,...,x,} is defined as a subset of the Cartesian product
of the domains of the variables in V, i.e. C C D(x}) X --- X
D(xy). A solution to C is a variable assignment o = {x| =
di,xp =da,...,x, =d,} withd; € D(x;) fori=1,...,n, such
that (dy,da,...,d,) € c. We also say that a solution sarisfies
C. A constraint satisfaction problem (CSP) &2 is defined as
the pair &2 = (V,C), where V is a finite set of variables and
C is a finite set of constraints defined on (subsets of) V. A
solution to a CSP is a variable assignment 6 = {x =d | d €
D(x),x € V}, such that all constraints in C are satisfied.

An XOR constraint C over binary variables V is the logical
“xor” or parity of a subset of V U {1}; a variable assignment

o satisfies C if it satisfies an odd number of elements in C.
The value 1 allows us to express even parity. For instance,
C = {x,y,z,1} represents the XOR constraint x@y Pz P 1,
which is TRUE when an even number of x,y,z are TRUE.
Note that it suffices to use only positive literals. E.g., ~x&®
y&@ —z and ~x @y are equivalent to C = {x,y,z} and C =
{x,y,1}, respectively.

When V has non-binary variables, we define a general-
ized XOR constraint C over V with respect to the largest
domain size d in V as a pair (U,r), where U CV and r €
{0,1,...,d — 1}, with the following semantics: a variable
assignment ¢ for V satisfies C iff ¥,y o(x) = r (mod d).
In words, the sum of the values of the variables in U (the
“left hand side”) must equal r (the “right hand side”), mod-
ulo d. For instance, for d =5, C = ({x,y,z},r) represents
the generalized XOR constraint x+y+z=r (mod 5). A key
property of such constraints that we will be using is that if r
is chosen uniformly at random from {0,1,...,d — 1}, any
variable assignment o satisfies the generalized XOR con-
straint with probability 1/d.

We will use probabilistic arguments to compute the cor-
rectness confidence for our approach. We will be interested
in the random variables that are the sum of indicator ran-
dom variables: Y = Y ;Ys. Linearity of expectation says
that E[Y] = Y E[Ys]. When various Y5 are pairwise inde-
pendent, i.e., knowing Y, tells us nothing about Y, even
variance behaves linearly: Var[Y] = Y ; Var[Ys].

Counting Using Binary XORs

Our first counting approach uses XOR constraints based on
a binary representation of the CSP. In this approach, we ex-
ploit a natural correspondence between CSP variable-value
pairs and binary variables. For each variable x; and value
vj € D(x;) in a CSP &, we create a new binary variable
yi,j which is 1 iff x; = v;. In other words, we add to &
the constraints: y; ; = (x; == v;) to obtain a new problem
2?'.! This does not change the semantics of the CSP. In
particular, &2 and £?’ have the same number of solutions.
However, we are now ready to use the counting framework
of Gomes, Sabharwal, & Selman (2006) essentially without
any changes, as discussed next.

Let m be the number of new binary variables we have cre-
ated. The counting approach will be characterized by three
parameters that we fix in advance: # > 1 is the number of it-
erations, s > 1 is the number of XOR constraints to add, and
a > 01is a slack factor. We will discuss later how to choose
s,t, and o based on the desired correctness confidence and
bound quality. The counting procedure is to do the following
t times:

1. Add to &’ s randomly chosen XOR constraints on the m
binary variables. Call this new problem Z”.

2. Test whether &” is satisfiable.
If all ¢ of the problems 22" turn out to be satisfiable, report
25=% 35 a lower bound on the solution count of 2.2

"n the actual implementation, we create y; ; and add its con-
straint only if it appears in one of the XOR constraints added later.
2When sufficiently long XORs are used, the method can be gen-

The probabilistic correctness guarantee associated with
this algorithm, as given by the following theorem, is a di-
rect consequence of the original XOR framework for SAT
problems. We note that this guarantee holds no matter how
long or short the XORs are. In practice, we choose XORs of
length around 10.

Theorem 1 (Binary Approach). When all t problems "
are satisfiable, the lower bound of 2°~% on the solution count
of & is correct with probability at least 1 — 27,

This shows that the probability of error goes down expo-
nentially as the number of trials, ¢, or the slack factor, o,
increase, making the algorithm quite robust for providing
lower bounds on the model count. For instance, to achieve
99% correctness confidence, it is sufficient to have ot = 7.
Accordingly, our experiments typically used (ot,7) = (1,7).
The value s of the number of XORs to add is chosen in prac-
tice based on a relatively fast binary search to see how far up
can s be pushed while still having 22" be satisfiable. (As s
grows, Z?" starts to be unsatisfiable more and more often.)

We note that when the XOR constraints are chosen to be
long enough, this framework also provides an upper bound
on the solution count. This result capitalizes on the fact that
if &7 has m binary variables y; ;, randomly chosen XORs
of average length m/2 over these variables act pairwise-
independently on various assignments to these variables. We
refer to Gomes, Sabharwal, & Selman (2006) for details.

Theorem 2 (Binary Approach, Upper Bound). Ler &
have m binary variables y; ; as above. When random XOR
constraints are chosen to be of average length m/2 and
all t problems 2" are unsatisfiable, the upper bound of
25T on the solution count of & is correct with probabil-
ity >1—279%,

Individual vs. Global Filtering

The framework of constraint programming offers various al-
gorithmic possibilities for dealing with the new XOR con-
straints that we have added. We next consider two ap-
proaches for filtering the domains of the binary variables
based on these constraints. The first approach — individual
filtering — treats each XOR constraint individually, while the
second — global filtering — treats them all together as a set of
linear equations in the field of two elements.

Individual filtering for XOR constraints is straightforward:
a domain value can be filtered for an XOR constraint C iff ex-
actly one variable x; in C is not yet bound to a value. In this
case, x; must equal the XOR or parity of the right hand side
of C and the values of the other (bound) variables in C. To
increase efficiency, we borrow the now-standard watched lit-
erals technique from SAT solvers. Namely, we maintain a
watch on two free variables of C. We process C only when
one of its watched variables is fixed to a value, in which
case we attempt to find a new free variable to watch, failing
which we fix the remaining watched variable to an appropri-
ate value so as to satisfy C.

Global filtering for XOR constraints is based on the pro-
cess of Gaussian elimination. Each XOR constraint can be

eralized to the case where some runs are satisfiable and some are
unsatisfiable (Gomes, Sabharwal, & Selman 2006).

viewed as a linear equality over the field I, of two elements,
0 and 1. In this case, Gaussian elimination can be performed
very efficiently, because no division is necessary (all coeffi-
cients are 1), and subtraction and addition are equivalent op-
erations. For a system of £k XOR constraints on n variables,
we need to perform O(k?) row operations for the diagonal-
ization, while each row operation takes O(m) time where m
is the number of elements in the row (we use a set represen-
tation with the union-find data structure). Hence, the total
time complexity is O(k*m), with m < n. During the diag-
onalization, we check whether a row becomes empty, and
whether it contains only one free variable. In the first case,
we report that the system of XOR constraints is not satisfi-
able. In the latter case, we assign the right hand side value
to the one free variable (here we actually filter the domain),
update the matrix, and remove the inactive row.

When we perform filtering based on Gaussian elimina-
tion, we achieve complete filtering on the system of XOR
constraints. To prove this, we show that after applying the
algorithm, each remaining domain value belongs to a solu-
tion to the system, or we detect that no solution exists. First,
infeasibility of the system is detected trivially by the algo-
rithm when a row becomes empty. If the system is feasible,
we argue that for every free variable x, both x =0 and x = 1
can be extended to some solution. Observe that after apply-
ing the algorithm, each active row in the system contains at
least two free variables, out of which one is part of a diag-
onal submatrix of the system. Choose any free variable x
and assign it any value in {0,1}. It is easy to check that
if x is not part of the diagonal submatrix of the system, we
can still match all right hand sides by choosing appropriate
values for the variables in the diagonal submatrix. When x
is an element of the diagonal submatrix, the row to which x
belongs can be satisfied by the other free variable(s) in that
row, while the remaining rows still have their own diagonal
submatrix variables free to help match the right hand side.

Counting Using Generalized XORs

We now describe an extension of the XOR counting frame-
work that applies more naturally to CSP variables. Instead
of creating binary variables representing CSP variable-value
pairs, we use generalized XORs directly on the CSP vari-
ables. Interestingly, this gives correctness guarantees for
lower bounds similar to the binary approach.

Let & = (V,C) be a CSP, and let d be the maximum of
the domain sizes of variables in V. This counting approach
will also be characterized by three parameters that we fix
in advance: ¢t > 1 is the number of iterations, s > 1 is the
number of generalized XOR constraints to add, and & > 0 is
a slack factor. The counting procedure is to do the following
t times:

1. Add to & s randomly chosen generalized mod-d XOR
constraints on the variables V. Call this new problem &',

2. Test whether &' is satisfiable.

If all of the problems Z?’ turn out to be satisfiable, report
d*~* as a lower bound on the solution count of 2.3

3 As before, this method can be generalized to the case when

The probabilistic correctness guarantee associated with
this algorithm is given by the following theorem. We again
note that this guarantee holds no matter how long or short
the generalized XORs are. In practice, we choose general-
ized XORs of length around 6.

Theorem 3 (Generalized Approach). When all t problems
P’ are satisfiable, the lower bound of d°~% on the solution
count of & is correct with probability at least 1 —d~*'.

Proof. Let d* be the true solution count of & (s* > 0 is a
real number). Assume for contradiction sake that we report
an incorrect lower bound for 22, i.e., d*~% > ds*, or, equiv-
alently, s* —s < —a. We will show that for such a choice
of s and ¢, the probability of encountering all ¢+ Z?’ prob-
lems to be satisfiable is at most d~%*, proving the desired
correctness confidence result.

Let S be the set of solutions of 2. For each ¢ € S, let
Ys = () be a 0-1 random variable indicating whether
0 is a solution of &’ or not. Since ¢ already satisfies &,
the expected value of Yy is the probability that o satisfies all
of the s generalized XOR constraints in &?’. Note that for
each generalized XOR constraint, ¢ induces a fixed value
in {0,1,...,d — 1} for the left hand side of the constraint.
Since the right hand side of each generalized XOR constraint
is chosen uniformly and independently at random from the
set {0,1,...,d — 1}, the probability that ¢ satisfies all of
them is 4, implying E[Ys] =d*.

Let Y =Y ;Y5. The random variable Y equals the num-
ber of solutions of Z?’, and we have E[Y] = E[Y.;Ys] =
Yo E[Ys] = Yod* =d* 5. Using Markov’s inequality, it
follows that

Pr[Z'is satisfiable] = Pr[num_solutions(2?) > 1]
—Py>1] < E[y]/I
— ds*fs

by Markov’s ineq.

IN

d* by assumption.

It follows by the probabilistic independence of the ¢ runs that
if we were reporting an incorrect lower bound, the probabil-
ity of encountering all ¢ problems 22" to be satisfiable would
be less than (d~%)" =d~*. This gives the desired bound on
the error probability. O

Note that Theorems 1, 2, and 3 provide correctness guar-
antees for every problem instance over several runs of our
(randomized) algorithms on that instance. This is in contrast
with other conceivable guarantees, such as the algorithms
succeeding on most instances but always failing on some.

This theoretical result, just like Theorem 1, may appear to
be somewhat counter-intuitive. E.g., in the extreme case,
one can imagine that the following happens: we add too
many random XORs (s >>> s*) but the resulting problem £’
still always turns out to be satisfiable. In this case, we will
incorrectly report a lower bound that is too high and, more-
over, with the same high confidence, 1 —d~%. The way to
understand this apparent inconsistency is that this worst-case
event, although technically feasible, is extremely unlikely
to happen as a random event, and this possibility is already

some runs are satisfiable and some are not.

taken into account in the correctness confidence. In fact, the
analysis used in the proof of the theorem bounds the like-
lihood of this and all other “bad” events with the exponen-
tially small number 2%, which determines our confidence.

Finally, we remark that it is not clear whether randomly
chosen generalized XOR constraints act pairwise indepen-
dently on various variable assignments, which is a key in-
gredient needed for a guaranteed upper bound using large
enough XORs (an analog of Theorem 2). Our experimental
results will focus on relatively short generalized XORs and
will provide guaranteed lower bounds.

Filtering Generalized XORs

As for the XOR constraints on binary variables, there are two
approaches to filtering generalized XOR constraints: either
treat each constraint individually, or treat them all together.

Filtering an individual generalized XOR constraint can be
done using a technique previously introduced to filter knap-
sack constraints (Trick 2003). In this approach, we exploit
a dynamic-programming graph that represents all possible
combinations of variable assignments whose sum (modulo
d) equals the right-hand side of the XOR constraint. More
formally, for a generalized XOR constraint on the variables
X1,X2,...,X, with maximum domain size d and right hand
size r, we define a graph G with ‘coordinate’ vertex set
v ={(@,j)]|ie{0,1,...,n},j€{0,1,....,d — 1}} and di-
rected edge set E, defined as

{(i—1,)),(i,k)} € Eif (j+v) mod d =k, and v € D(x;),

fori=1,...,n. In this graph, every directed path from ver-
tex (0,0) to (n,r) corresponds to a solution to the XOR con-
straint. In particular, if an edge {(i— 1,), (i,k)} is on such
a path, the corresponding domain value ((k— j) mod d) €
D(x;) is part of the corresponding solution. To filter the do-
mains, we remove all edges not on such paths, together with
the corresponding domain values. This is done as follows.
First, we remove all edges that are not on any path originat-
ing from vertex (0,0). Second, we reverse the edges and re-
move all edges that are not on any path originating from ver-
tex (n,r). Both steps take linear time in the size of the graph.
After these two steps, all remaining edges are on a path rep-
resenting a solution, or no such path exists. Then, for each
variable x;, we remove domain value v € D(x;) if there is no
edge {(i—1,/),(i,k)} such that (j+v) mod d =kin G. Do-
ing so, all remaining domain values are guaranteed to be part
of a solution to the constraint. Hence we achieve complete
filtering in O(nd?) time.*

We have also implemented an alternative filtering algo-
rithm, that simply performs a brute force enumeration of
all possible value combinations of the variables. If a do-
main value is not supported by any solution, it is removed
from the corresponding domain. Although its running time
is O(d"), it can be more efficient than the above algorithm
in case there are only a few (free) variables in the XOR con-
straint. In practice, we apply the brute-force algorithm when
there are at most three free variables in the XOR constraint.

4The original algorithm for knapsack constraints runs in
pseudo-polynomial time, depending on the right hand side.

Furthermore, the effectiveness of the filtering algorithm is
application-dependent. We observed that in several cases
few or no domain values are removed when there are more
than 4 or 5 free variables left. Therefore we apply a thresh-
old of free variables (typically 4 or 5) above which we do
not apply the filtering algorithm.

As an alternative to the individual filtering of the gener-
alized XOR constraints, one may group them together and
reason upon them as a whole. A natural extension of the bi-
nary case is to apply Gaussian elimination here as well. Un-
fortunately, Gaussian elimination cannot be generalized in a
straightforward manner to a set of linear equations modulo
d for arbitrary d, because division may be ambiguous. We
can overcome this problem by defining d to be the smallest
prime power p“ that is at least as large as the maximum do-
main size of the variables, and safely apply Gaussian elim-
ination over the larger field F .. However, the efficiency of
the implementation of prime power fields is likely to be an
issue and, more importantly, Gaussian elimination over I a
will not achieve complete filtering of the domains. For these
practical reasons we have not implemented the correspond-
ing filtering algorithm.

Experimental Results

We conducted experiments on a cluster of 3.8 GHz Intel
Xeon machines with 2 GB memory per node running Linux
2.6.9-22 ELsmp. The constraint programming solver used
to implement our filtering algorithms and evaluate the count-
ing framework was ILOG Solver 6.3 (ILOG, SA 2006).
We also used ILOG Solver for exact solution counting
based on enumerating all solutions systematically, which
we believe is currently the best available generic solution
counting method for CSPs. We call this method pure CSP.
For integer programming domains, we compare with two of
the techniques recently proposed by Morgado et al. (2006)
based on a solution count preserving translation first to
pseudo-Boolean formulas and subsequently to SAT. These
comparisons are based on the results reported by these au-
thors. Their first counting method is termed pb-counter.
For the second method, the problem is translated into a SAT
instance whose solutions are counted using Relsat (Ba-
yardo Jr. & Pehoushek 2000). The solution count preserv-
ing translation used to obtain the SAT instances is due to
Bailleux, Boufkhad, & Roussel (2006). We refer to this
technique as Relsat+BBR.

In all our experiments with the binary CSP approach, o
was set to 7/t and 7 to 7, giving a correctness confidence of
1—277~99% (cf. Theorem 1). For all experiments with the
generalized CSP approach with maximum domain size d, o
was set to (log,; 100) /¢ and 7 to 7, again giving a correctness
confidence of 1 — d 1284100 ~ 999 (cf. Theorem 3).

First, we evaluate the performance of our different ap-
proaches: i) binary XOR constraints filtered individually, ii)
binary XOR constraints filtered globally, and iii) generalized
XOR constraints. For this evaluation we count the number
of solutions to the n-queens problem, for which the ex-
act number of solutions is known up to order n = 25.> We

>See http://www.research.att.com/njas/sequences/A000170.

compare the approaches with each other, and with a counter
based on pure enumeration using the CSP solver, with a one
hour time limit. For each method, we report the number of
solutions found and the corresponding running time in Ta-
ble 1. For the XOR approach, the running time is the sum of
all seven runs.

Not surprisingly, the count obtained by the pure CSP ap-
proach is limited by the number of search nodes it can tra-
verse in one hour, yielding a count of roughly 10 solutions
in all cases. In contrast, our XOR-based techniques can count
up to roughly 10" solutions within a few minutes for order
30 (note that the exact count for this problem is unknown).
The results further indicate that filtering the system of bi-
nary XOR constraints globally can be beneficial compared to
individual filtering for the same set of constraints. Overall,
however, for all problems in this domain, generalized XOR
constraints outperform the binary approach. The behavior
on n—queens depicts a general trend that we observed: the
generalized XORs approach often works quite well in prac-
tice, although there are cases where the binary approach,
with its finer granularity, outperforms generalized XORs.

We next compare our approach with the two tech-
niques for integer programming domains mentioned earlier,
pb-solver and Relsat+BBR. We use a set of graph col-
oring problems from the DIMACS benchmark set consid-
ered by Morgado et al. (2006). The results are reported in
Table 2 (problems games120 to 2_Insertions_3).°. For
these problems, we also report the number of solutions ob-
tained with pure CSP in one hour. Quite surprisingly a pure
CSP approach can sometimes outperform pb—counter and
Relsat+BBR (for games-120), although it uses a longer
running time. Our generalized XOR approach performs very
well on these problems. In particular, for games120, we im-
prove (with 99% correctness confidence) the previous lower
bound of 1.4 x 10° in 30 minutes to 4.5 x 10*? solutions in
under a minute.

Finally, we consider a new problem domain which, to the
best of our knowledge, has not been counted before: spa-
tially balanced Latin squares. A Latin square is an n by n
matrix in which each cell is assigned a number from 1 up
to n, such that each row and each column contains exactly
one of the numbers 1 up to n. A spatially balanced Latin
square has the additional requirement that for each pair of
numbers in {1,2,...,n}, the sum of their distance in each
row is equal to a given constant. The largest order known
for which such squares exist is 35, found by Smith, Gomes,
& Fernandez (2005) using a streamlined local search ap-
proach. For SAT or integer programming based methods,
solving these problems is out of reach even for very small
orders. Using CSP, squares have been found up to order
14 and 18 (Gomes & Sellmann 2004). Here we count spa-
tially balanced Latin squares for order 14, 15, and 17, using
generalized XOR constraints. In fact, we count streamlined

%We have scaled down the running times of pb-solver and
Relsat+BBR by a factor of 2 since they were reportedly run on a
1.9 GHz machine. We also note that the counter LattE (De Loera
et al. 2004) for integer programs is reportedly not able to count any
of these instances.

binary XORs

binary XORs

generalized XORs

pure CSP (individual) (global) (individual)
order true count count time count time count time count time
15 23x10° 23%x10° 10 min >6.6x10% 41s >2.6x10° 665 >3.9x10° 3s

20 3.9x1019
25 22x100
30

>3.5x% 10° 1hr
>2.2x%10° 1hr
>4.1x%10° 1 hr

>1.1x10° 245
>34x%x107 1255
>54%x108 1555

>21x10° 17s
>34%x107 101s
>54x%x108 1555

> 6.6 x 108 138
>20x102 60s
>092x101 1965

Table 1: Computational results on n-Queens problems, comparing our different approaches (99% correctness confidence).

pb-counter Relsat+BBR pure CSP CSP+XORs
games120 >1.1%x10° 30 min >1.4%x10° 30 min >43%x10% 1hr >45%x10 1min
myciel5 >1.1x107 30 min >3.6x 10" 30 min >095x%x10% 1hr >4.1x10"7 12 min
mugl00._1 >24%107 30 min >2.7%x10% 30 min >72%x10% 1hr >1.0%x102® 1min
2_Insertions_.3 >9.0x10° 30 min >4.6%x10% 30 min >12%x10° 1hr >23%x102 1min
pure CSP CSP+XORs
sblsl4 > 273 1hr > 591 5 min
sblsl5 >112 1 hr >1,748 8 min
sblsl? — 1 hr >1,058 14 min

Table 2: Computational results on graph coloring problems and spatially balanced Latin square problems. The results for the

XOR approach are with 99% correctness confidence.

spatially balanced Latin squares, by using the streamlined
model of Smith, Gomes, & Fernandez (2005). The results
are reported in Table 2 (sbls 14-17), in which we also
report the solution count of pure CSP. We see, for example,
that the pure CSP solver counts 112 solutions in one hour for
sbls15, while our generalized XOR approach counts 1748
solutions in 8 minutes (again, with 99% correctness confi-
dence). Moreover, sb1s17 cannot be solved at all by the
pure CSP solver in one hour, while we count 1058 solutions
in 14 minutes. This reconfirms an interesting phenomenon
observed earlier by Gomes, Sabharwal, & Selman (2006):
for computationally challenging problems, randomly gener-
ated XOR constraints can sometimes prove to be effective
domain-independent streamliners.

Conclusion

We introduced a new generic solution counting technique
for constraint satisfaction problems. This approach builds
upon a method recently proposed for Boolean satisfiability
problems, and combines it with the structured representa-
tion of CSPs to quickly provide lower bounds on solution
counts with strong correctness guarantees. We considered
both “regular” XOR constraints on an equivalent binary rep-
resentation of CSPs as well as generalized XOR constraints
directly on the CSP variables. For both cases, we devel-
oped efficient complete domain filtering algorithms. Our ex-
perimental evaluation on a set of challenging combinatorial
problems demonstrates the effectiveness of this approach.

Acknowledgments
This work was supported by Intelligent Information Systems
Institute (IISI), Cornell University (AFOSR grant FA9550-
04-1-0151) and DARPA (REAL grant FA8750-04-2-0216).

References

Angelsmark, O., and Jonsson, P. 2003. Improved algorithms for
counting solutions in constraint satisfaction problems. In 8th CP,
volume 2833 of LNCS, 81-95.

Bailleux, O.; Boufkhad, Y.; and Roussel, O. 2006. A transla-
tion of pseudo Boolean constraints to SAT. J. on Satisfiability,
Boolean Modeling and Computation 2:191-200.

Bayardo Jr., R. J., and Pehoushek, J. D. 2000. Counting models
using connected components. In 17th AAAL 157-162.

De Loera, J. A.; Hemmecke, R.; Tauzer, J.; and Yoshida, R.
2004. Effective lattice point counting in rational convex poly-
topes. J. Symb. Comput. 38(4):1273-1302.

Gomes, C. P, and Sellmann, M. 2004. Streamlined constraint
reasoning. In /0th CP, volume 3258 of LNCS, 274-289.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model count-
ing: A new strategy for obtaining good bounds. In 21st AAAI,
54-61.

ILOG, SA. 2006. ILOG Solver 6.3 reference manual.

Kask, K.; Dechter, R.; and Gogate, V. 2004. Counting-based
look-ahead schemes for constraint satisfaction. In /0th CP, vol-
ume 3258 of LNCS, 317-331.

Morgado, A.; Matos, P. J.; Manquinho, V. M.; and Marques-Silva,
J. P. 2006. Counting models in integer domains. In 9th SAT,
volume 4121 of LNCS, 410-423.

Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi, T.
2004. Combining component caching and clause learning for ef-
fective model counting. In 7th SAT. Online Proceedings.

Smith, C.; Gomes, C. P.; and Ferndndez, C. 2005. Streamlining
Local Search for Spatially Balanced Latin Squares. In IJCAI,
1539-1540.

Trick, M. 2003. A Dynamic Programming Approach for Con-
sistency and Propagation for Knapsack Constraints. Annals of
Operations Research 118:73-84.

