
Tradeoffs in Backdoors:
Inconsistency Detection, Dynamic Simplification, and Preprocessing ∗

Bistra Dilkina and Carla P. Gomes and Ashish Sabharwal
Department of Computer Science, Cornell University, Ithaca, NY 14853, U.S.A.

{bistra,gomes,sabhar}@cs.cornell.edu

Abstract
There has been considerable interest in the identification of
structural properties of combinatorial problems that lead to
efficient algorithms for solving them. The notion of back-
doors captures hidden structure exploited by state-of-the-art
constraint solvers. We prove that strong backdoor identifi-
cation with respect to the tractable classes Horn and 2CNF
becomes harder than NP (unless NP=coNP) as soon as the
inconsequential sounding feature of empty clause detection
(present in all modern SAT solvers) is added. More in-
terestingly, in practice such a feature as well as polyno-
mial time constraint propagation mechanisms often lead to
much smaller backdoor sets. We show experimentally that
instances from real-world domains such as car configura-
tion and logistics that have thousands of variables often have
backdoors of only a few variables. We evaluate the effect of
different preprocessors on the structure of the instances and
hence on the backdoor size. Finally, strong backdoors have
been mostly studied for unsatisfiable instances. In this work,
we also look into strong backdoors of satisfiable instances
and their relationship to solution counting.

1 Introduction
Capturing and exploiting problem structure is key to solving
large real-world combinatorial problems. For example, sev-
eral interesting tractable classes of combinatorial problems
have been identified by restricting the constraint language
used to characterize such problem instances, e.g. 2CNF,
Horn, Linear Programming (LP), and Minimum Cost Flow
problems (MCF). In general, however, such restricted lan-
guages are not rich enough to characterize complex com-
binatorial problems. A very fruitful line of research that
has been pursued in the study of combinatorial problems
is the identification of various structural properties of in-
stances that lead to efficient algorithms. Ideally, one prefers
structural properties that are “easily” identifiable, such as the
topology of the underlying constraint graph.

Another approach for studying combinatorial problems
focuses on the role of hidden structure as a way of analyz-
ing and understanding the efficient performance of state-of-
the-art constraint solvers on many real-world problem in-

∗Some of the material in this paper was presented at the CP-07
conference (Dilkina, Gomes, & Sabharwal, 2007).
Copyright c© 2007, authors listed above. All rights reserved.

stances. One example of such hidden structure is a back-
door set, i.e., a set of variables such that once they are in-
stantiated, the remaining problem simplifies to a tractable
class (Williams, Gomes, & Selman, 2003a,b; Gomes et al.,
2000; Chen, Gomes, & Selman, 2001; Kilby et al., 2005;
Szeider, 2005). Note that the notion of tractability in the
definition of backdoor sets is not necessarily syntactically
defined: it may be defined by means of a polynomial time
algorithm, such as unit propagation. In fact, the notion of
backdoor sets came about as a way of explaining the high
variance in performance of state-of-the-art SAT solvers and
as a tool for analyzing and understanding the efficient per-
formance of these solvers on many real-world instances,
in which the propagation mechanisms of fast “sub-solvers”
play a key role. In this work the emphasis was not so much
on efficiently identifying backdoor sets, but rather on the fact
that many real-world instances have surprisingly small sets
of backdoor variables.

Even though variable selection heuristics, randomization,
and learning in current SAT/CSP solvers are quite effective
at finding relatively small backdoors in practice, finding a
smallest backdoor is in general intractable in the worst case.
This intractability result assumes that the size of the small-
est backdoor is unknown and can grow arbitrarily with n.
However, if the size of the backdoor is small and fixed to
k, one can search for the backdoor by considering all

(n
k
)

subsets of k variables and all 2k truth assignments to these
candidate variables. This is technically a polynomial time
process for fixed k, although for moderate values of k the
run time becomes infeasible in practice. Can one do better?
This is a question considered in the area of fixed-parameter
complexity theory. A problem with input size n and a param-
eter k is called fixed-parameter tractable w.r.t. k if it can be
solved in time O(f (k)nc) where f is any computable func-
tion and c is a constant. Note that c does not depend on k,
meaning that one can in principle search fairly efficiently for
potentially large backdoors w.r.t. a particular tractable class
if backdoor detection w.r.t. that class is shown to be fixed
parameter tractable. Indeed, Nishimura, Ragde, & Szeider
(2004) showed that detecting strong backdoors (cf. Section 2
for a formal definition) w.r.t. the classes 2CNF and Horn
is NP-complete but also fixed-parameter tractable. Note,
however, that this result is only w.r.t. the tractable classes
of pure 2CNF/Horn. In particular, certain kinds of obvi-

ous inconsistencies are not detected in these classes, such as
having an empty clause in an arbitrary formula — clearly,
any basic solver detects such inconsistencies. More specifi-
cally, we prove that strong Horn- and 2CNF-backdoor iden-
tification becomes both NP- and coNP-hard, and therefore
strictly harder than NP assuming NP 6= coNP, as soon as
the seemingly small feature of empty clause detection is
added to these classes. This increase in formal complex-
ity has however also a clear positive aspect in that adding
empty clause detection often considerably reduces the back-
door size. For example, in certain graph coloring instances
with planted cliques of size 4, while strong Horn-backdoors
involve ≈ 67% of the variables, the fraction of variables in
the smallest strong backdoors w.r.t. mere empty clause de-
tection converges to 0 as the size of the graph grows.

Encouraged by the positive effect of slightly extending
our notion of Horn-backdoor, we also consider backdoors
w.r.t. RHorn (renamable Horn), UP (unit propagation), PL
(pure literal rule), UP+PL, and SATZ. For each of these no-
tions, we show on a variety of domains that the correspond-
ing backdoors are significantly smaller than pure, strong
Horn-backdoors.

At a higher level, our results show that the size of back-
doors can vary dramatically depending on the effectiveness
of the underlying simplification and propagation mecha-
nism. For example, as mentioned earlier, empty clause de-
tection can have a major impact on backdoor size. Similarly,
Horn versus RHorn has an impact. We also show that there
can be a substantial difference between “deletion” back-
doors, where one simply removes variables from the for-
mula, versus strong backdoors, where one factors in the vari-
able settings and considers the propagation effect of these
settings. We prove by construction that there are formu-
las for which deletion RHorn-backdoors are exponentially
larger than the smallest strong RHorn-backdoors.

Despite the worst-case complexity results for strong back-
door detection, we show that Satz-Rand (Li & Anbulagan,
1997; Gomes, Selman, & Kautz, 1998) is remarkably good
at finding small strong backdoors on a range of experimental
domains. For example, for the car configuration problem,
strong “SATZ-backdoor” sets involve 0-0.7% of the vari-
ables.

In addition to on-the-fly simplification techniques used by
current solvers such as unit propagation and pure literal rule,
another family of still poly-time but more sophisticated al-
gorithms are so-called preprocessing techniques. Such pre-
processors incorporate simplification and inference mecha-
nism that are too expensive to be applied at each node of the
backtrack search tree. Instead, they are applied only at the
root of the search tree. The implied assumption is that the
formulas obtained after running a preprocessor are easier to
decide. However, preprocessing inevitably affects the struc-
ture of the original instance and hence may obscure some
of the original hidden structure. Here, we look at the ef-
fect of preprocessing on the backdoor size in unsatisfiable
instances.

While the notion of strong backdoors is defined with re-
spect to both satisfiable and unsatisfiable instances, most
reported results to date study strong backdoors for unsat-

isfiable instances Kilby et al. (2005); Dilkina, Gomes, &
Sabharwal (2007). In this work, we look at strong back-
door sizes in some satisfiable instances, and the effect of
preprocessors on the backdoors of these formulas. Finally,
We explore the semantics of strong backdoors in satisfiable
instances and their relation to counting solutions. In partic-
ular, while pure literal backdoors only facilitate the decision
of satisfiability, strong backdoors w.r.t. unit propagation are
also backdoors for the problem of counting solutions.

2 Preliminaries and Related Work
A CNF formula F is a conjunction of a finite set of clauses, a
clause is a disjunction of a finite set of literals, and a literal
is a Boolean variable or its negation. The literals associ-
ated with a variable x are denoted by xε , ε ∈ {0,1}. var(F)
denotes the variables occurring in F . A (partial) truth as-
signment (or assignment, for short) is a map τ : Xτ →{0,1}
defined on some subset of variables Xτ ⊆ var(F). A solu-
tion to a CNF formula F is a complete variable assignment τ
(i.e., with Xτ = var(F)) that satisfies all clauses of F . F [ε/x]
denotes the simplified formula obtained from F by remov-
ing all clauses that contain the literal xε and removing, if
present, the literal x1−ε from the remaining clauses. For a
partial truth assignment τ , F [τ] denotes the simplified for-
mula obtained by setting the variables according to τ .

The concept of backdoors and their theoretical foun-
dations were introduced by Williams, Gomes, and Sel-
man (Williams, Gomes, & Selman, 2003a,b). Informally,
a strong backdoor set is a set of variables such that for each
possible truth assignment to these variables, the simplified
formula is tractable. The notion of tractability is quite gen-
eral, and it even includes tractable classes for which there
is not a clean syntactic characterization. It is formalized in
terms of a polynomial time sub-solver:
Definition 1. A sub-solver S is an algorithm that given as
input a formula F satisfies the following conditions:

1. Trichotomy: S either rejects F or correctly determines it
(as unsatisfiable or satisfiable, returning a solution if sat-
isfiable),

2. Efficiency: S runs in polynomial time,
3. Trivial solvability: S can determine if F is trivially true

(has no clauses) or trivially false (has an empty clause,
{}), and

4. Self-reducibility: If S determines F , then for any variable
x and value ε ∈ {0,1}, S determines F [ε/x].

Definition 2. A set B of variables is a strong backdoor set
for a formula F w.r.t a sub-solver S if B ⊆ var(F) and for
every truth assignment τ : B → {0,1}, S returns a satisfying
assignment for F [τ] or concludes that F [τ] is unsatisfiable.

Clearly, if B is a strong S-backdoor for F , then so is any B′

such that B⊆B′ ⊆ var(F). For any sub-solver S, given 〈F,k〉
as input, the problem of deciding whether F has a strong S-
backdoor of size k is in the complexity class ΣP

2 : we can
formulate it as, “does there exist a B ⊆ var(F), |B|= k, such
that for every truth assignment τ : B → {0,1}, S correctly
determines F [τ/B]?” We are interested in the complexity of
this problem for specific sub-solvers.

2

Although we focus on strong backdoors, a related no-
tion applicable to satisfiable formulas only is that of “weak”
backdoors. The notion of weak backdoors with respect to
satisfiable formulas captures, in a sense, a “witness” to the
satisfiability of the instance. It requires that the sub-solver
is able to find a solution for the formula, given some as-
signment to the weak backdoor variables (as opposed to all
assignments).
Definition 3. A set B of variables is a weak backdoor set
for a formula F w.r.t. a sub-solver S if B ⊆ var(F) and for
some truth assignment τ : B → {0,1}, S returns a satisfying
assignment for F [τ].

The most trivial sub-solver that fulfills the conditions in
Definition 1 is the one that only checks for the empty for-
mula and for the empty clause. Lynce & Marques-Silva
(2004) show that the search effort required by the SAT solver
zChaff (Moskewicz et al., 2001) to prove a random 3-SAT
formula unsatisfiable is correlated with the size of the strong
backdoors w.r.t. this trivial sub-solver.

More relevant sub-solvers employed by most state-of-the-
art SAT solvers are Unit Propagation and Pure Literal Elim-
ination, and their combination. A unit clause is a clause
that contains only one literal. Given a formula F , the Unit
Propagation sub-solver (UP) checks whether the formula is
empty or contains the empty clause, in which case it is triv-
ially solvable, otherwise it checks whether the formula con-
tains a unit clause. If yes, it assigns the variable in the unit
clause the corresponding satisfying value, and recurses on
the simplified formula. If the formula does not contain any
more unit clauses, it is rejected. A pure literal in F is a
literal xε such that x ∈ var(F) and x1−ε does not occur in
F . The Pure Literal Elimination sub-solver (PL) checks for
variables that appear as pure literals, assigning them the cor-
responding value and simplifying, until the formula is triv-
ially solvable or is rejected (when no more pure literals are
found). The sub-solver that uses both of these rules is re-
ferred to as UP+PL.

Szeider (2005) studied the complexity of finding strong
backdoors w.r.t. the above sub-solvers. For S ∈ {UP, PL,
UP+PL} and with k as the parameter of interest, he proved
that the problem of deciding whether there exists a strong
C-backdoor of size k is complete for the parameterized com-
plexity class W[P]. Interestingly, the naı̈ve brute-force pro-
cedure for this problem w.r.t. any sub-solver S is already in
W[P]; it has complexity O(nk2knα) and works by enumer-
ating all subsets of size ≤ k, trying all assignments for each
such subset, and running the O(nα) time sub-solver. Hence,
in the worst case we cannot hope to find a smallest strong
backdoor w.r.t. UP, PL, or UP+PL more efficiently than with
brute-force search.

Satz (Li & Anbulagan, 1997) is a DPLL-based SAT solver
that incorporates a strong variable selection heuristic and an
efficient simplification strategy based on UP and PL. Its sim-
plification process and lookahead techniques can be thought
of as a very powerful sub-solver. Kilby et al. (2005) study
strong SATZ-backdoors: sets of variables such that for every
assignment to these variables, Satz solves the simplified for-
mula without any branching decisions (i.e., with a “branch-

free” search). They measure problem hardness, defined as
the logarithm of the number of search nodes required by
Satz, and find that it is correlated with the size of the smallest
strong SATZ-backdoors.

3 Two Key Properties of Backdoors
While other approaches to studying structural properties of
combinatorial problems have looked at instance character-
istics that are “statically” identifiable, such as the topology
of the underlying constraint graph, the notion of backdoors
captures “hidden” structure. A key property of the backdoor
definition is that it allows for “dynamic” constraint reason-
ing as a function of variable assignments. For each assign-
ment to the backdoor variables, the resulting simplified for-
mula should be decidable by the sub-solver. Another im-
portant property of backdoors is that the definition of a sub-
solver captures inconsistency detection (the solvability prop-
erty), a key feature to the efficiency of SAT solvers. In this
section, we show that while relaxing each of these proper-
ties can make identifying backdoors computationally easier,
it also can lead to exponentially larger backdoor sizes and
hence weakens the usefulness of the notion of backdoors.
We review the theoretical results of (Dilkina, Gomes, & Sab-
harwal, 2007), omitting complete proof details.

A sub-solver S correctly determines a subclass of CNF
formulas and rejects others, and hence implicitly defines the
class CS of formulas that it can determine. A natural varia-
tion of the definition of backdoor does not explicitly appeal
to a sub-solver, but rather requires the remaining formula,
after setting variables in the backdoor, to fall within a known
tractable sub-class, such as 2CNF, Horn, or RHorn. A Horn
clause is a clause that contains at most one positive literal.
A binary clause is a clause that contains exactly two literals.
A formula is called Horn (resp., 2CNF) if all its clauses are
Horn (binary). We also use Horn and 2CNF to denote the
two corresponding classes of formulas. Renaming or flip-
ping a variable x in F means replacing every occurrence of
xε in F with x1−ε . F is Renamable Horn, also called RHorn,
if all clauses of F can be made Horn by flipping a subset
of the variables. We will refer to backdoors w.r.t. to these
tractable classes as Horn-backdoor, RHorn-backdoor, etc.
Note that this way of defining the backdoor de facto cor-
responds to relaxing the assumption of the sub-solver’s triv-
ial solvability and therefore trivially satisfiable or trivially
unsatisfiable formulas need not lie within the tractable class.
For example, an arbitrary formula with an empty clause may
not be Horn. Such formulas — with an empty clause in them
— are important for our discussion and we use the following
notation:
Definition 4. C{} is the class of all formulas that contain the
empty clause, {}. For any class C of formulas, C{} denotes
the class C∪C{}.

We show that strong backdoors w.r.t. 2CNF{} and Horn{}
behave very differently, both in terms of the complexity
of finding backdoors as well as backdoor size, compared
to strong backdoors w.r.t. 2CNF and Horn. In particu-
lar, the two problems of deciding whether a formula has

3

a strong backdoor w.r.t. 2CNF{} and Horn{}, respectively,
are NP-hard as well as coNP-hard. This shows that unless
NP=coNP, this problem is much harder than detecting strong
backdoors w.r.t. 2CNF and Horn, which are both known
to be NP-complete (Nishimura, Ragde, & Szeider, 2004).
Recall that adding C{} to 2CNF and Horn corresponds to
adding empty clause detection to the two classes.

Let C ∈ {Horn, 2CNF}. Given a formula F and k ≥ 0,
we show that the problem of deciding whether F has a
strong C{}-backdoor of size k is NP-hard by extending the
argument originally used by Nishimura, Ragde, & Szeider
(2004) for (pure) 2CNF/Horn using a reduction from the
NP-complete Vertex Cover problem. UNSAT is the coNP-
complete problem of deciding whether a given CNF formula
is unsatisfiable. We prove coNP-hardness of backdoor de-
tection w.r.t. Horn{} and 2CNF{} by reducing UNSAT to
strong C{}-backdoor detection exploiting the fact that Horn
and 2CNF are closed under clause deletion. Combining the
two results together gives us our main theorem:
Theorem 1. Let C ∈ {Horn, 2CNF}. Given a formula F
and k ≥ 0, the problem of deciding whether F has a strong
C{}-backdoor of size k is both NP-hard and coNP-hard, and
thus harder than both NP and coNP, assuming NP 6= coNP.

Although the seemingly small feature of empty clause de-
tection results in an increase in formal complexity of back-
door detection, it also has a clear positive aspect in that
adding empty clause detection to Horn and 2CNF can result
in arbitrarily smaller minimum backdoor size. Let us con-
sider the following formula F = (x0)∧ (¬x0)∧ (x0 ∨ x1 . . .∨

xn). The variable x0 clearly corresponds to a a strong C{}-
backdoor of size 1, while the smallest Horn backdoor has
size n.

A different notion of backdoors, motivated by the work of
Nishimura, Ragde, & Szeider (2004), involves a set of vari-
ables such that once these variables are “deleted” from the
formula, the remaining formula falls into a given tractable
class (without considering any simplification due to truth as-
signments). The deletion of a variable x from a formula F
corresponds to syntactically removing the literals of x from
F : F −x =

{

c\
{

x0,x1} | c ∈ F
}

. For X ⊆ var(F), F −X is
defined similarly.
Definition 5 (deletion C-backdoor). A set B of variables
is a deletion backdoor set of a formula F w.r.t. a class C if
B ⊆ var(F) and F −B ∈C.

When membership in C can be checked in polynomial
time, the problem of deciding whether F has a deletion C-
backdoor of size k is trivially in NP. This problem is in fact
NP-complete when C is 2CNF (Nishimura, Ragde, & Szei-
der, 2004), Horn (Nishimura, Ragde, & Szeider, 2004), or
RHorn (Chandru & Hooker, 1992).

In general, a deletion C-backdoor may not be a strong C-
backdoor. E.g., when C includes C{}, any 3CNF formula
F has a trivial deletion C-backdoor of size 3: select any
clause and use its variables as the deletion backdoor. Un-
fortunately, such a “backdoor” set is of limited practical use
for efficiently solving F . When the class C is closed un-
der removal of clauses, every deletion C-backdoor is indeed

also a strong C-backdoor. Conversely, strong C-backdoors
often are not deletion C-backdoors, because assigning val-
ues to variables usually leads to further simplification of the
formula. Nonetheless, for C ∈ {2CNF, Horn}, deletion and
strong backdoors are equivalent, a key fact underlying the
fixed parameter algorithm of Nishimura, Ragde, & Szeider
(2004). We will show that this equivalence between deletion
backdoors and strong backdoors does not hold for RHorn.

We prove that strong RHorn-backdoors can be exponen-
tially smaller than “static” deletion RHorn-backdoors, and
are therefore more likely to succinctly capture structural
properties of interest in formulas. The main idea is the fol-
lowing. Suppose B is a strong RHorn-backdoor for F . Then
for each assignment τ to the variables in B, there exists a re-
naming rτ for the variables in F [τ/B] such that F [τ/B] un-
der the renaming rτ yields a Horn formula. If F is carefully
constructed such that for different τ , the various renamings
rτ are different and mutually incompatible, then there is no
single renaming r under which F −B, the formula obtained
by deleting the variables in B, becomes Horn.
Theorem 2. There are formulas for which the smallest
strong RHorn-backdoors are exponentially smaller than any
deletion RHorn-backdoors.

4 Strong Backdoor Sizes in Practice
The complexity of backdoor detection limits the usefulness
of backdoors as a solution concept for combinatorial prob-
lems. However, the notion of backdoors can be applied
as a tool for analyzing and understanding the efficient per-
formance of state-of-the-art solvers on many real-world in-
stances. Previous work of strong backdoors has consid-
ered random SAT formulas Kilby et al. (2005); Lynce &
Marques-Silva (2004). In this section, we demonstrate that,
although one cannot efficiently identify minimum backdoor
sets, in practice many real-world combinatorial problems
have surprisingly small backdoors.

We analyze the size of strong and deletion backdoors w.r.t.
several classes and sub-solvers in four problem domains.

We consider backdoors w.r.t. the tractable classes Horn
and RHorn. The problems of finding a smallest deletion
Horn-backdoor (equivalent to strong Horn-backdoor) and of
finding a smallest deletion RHorn-backdoor can be formu-
lated as 0-1 integer programs (omitted here). Using such
encodings and the ILOG CPLEX libraries (ILOG, SA, 2006)
we compute optimal (smallest) Horn- and RHorn-backdoors
in our experimental evaluation of backdoor size.

Following previous work (Williams, Gomes, & Sel-
man, 2003a; Kilby et al., 2005), we also consider strong
SATZ-backdoors. We obtain an upper bound on the size
of the smallest strong SATZ-backdoor by running Satz-
Rand (Gomes, Selman, & Kautz, 1998) (a randomized ver-
sion of Satz) without restarts multiple times with different
seeds and recording the set of variables on which the solver
branches when proving unsatisfiability. For every possible
assignment to this set of variables, Satz decided the simpli-
fied formula in a branch-free manner by applying its prop-
agation mechanism which includes UP, PL and probing.
Hence, this set of variables is a backdoor w.r.t. to the propa-

4

instance num num Horn RHorn SATZ UP+PL UP
set vars clauses % (del) % % % %

gcp 300 900 67724.4 66.67 16.78 0.11 0.51 0.60
gcp 500 1500 187556.0 66.67 16.73 0.07 0.28 0.80
map 30 57 13424 103120 48.21 48.19 0 0.41 3.23
map 50 97 38364 438840 48.93 48.92 0 0.25 3.19
pne 2000 40958.9 67.88 66.86 0.05 0.38 0.42
pne 5000 98930.8 67.80 66.80 0.00 0.13 0.15
C168 FW SZ 1698 5646.8 14.32 2.83 0.16 0.77 5.70
C210 FW RZ 1789 7408.3 12.54 4.81 0.65 1.42 12.97
C210 FW SZ 1789 7511.8 13.74 5.37 0.23 0.78 11.15
C220 FV SZ 1728 4758.2 9.14 2.92 0.19 0.46 8.88

Table 1: Strong backdoor sizes for Graph Coloring (gcp), MAP planning (map), Pure Nash Equilibrium (pne), and Car Con-
figuration (Cxxx). Each row reports the average over several instances. Backdoor sizes are shown as the % of the number of
problem variables. The RHorn numbers are for deletion backdoors. Horn- and RHorn-backdoor sizes are the smallest sizes,
while the rest are upper bounds.

gation mechanism of Satz(i.e. a SATZ-backdoor) and its size
is an upper bound on the minimum SATZ-backdoor size.

We also record the set of variables not set by UP and PL
while searching with Satz. By a similar reasoning as above,
the size of this set gives us an upper bound on the small-
est strong (UP+PL)-backdoor size. Similarly, we record all
variables set in Satz-Rand by anything but the UP(or PL)
procedure to obtain an upper bound on the smallest strong
UP(or PL)-backdoor size. For satisfiable instances, we ob-
tain upper bounds on the smallest backdoors by forcing Satz
to continue searching even after a solution is found until the
full search space is explored. By recording the variables on
which it branches while finding all solutions, we obtain a
backdoor set such that for each assignment the simplified
formula is determined as either unsatisfiable or satisfiable
by the propagation mechanism of Satz. For each problem
instance, we record the smallest backdoor size found across
all runs as the upper bound to the minimum backdoor size
for this instance.

For our experimental evaluation, we considered four
problem domains: graph coloring, logistics planning, equi-
librium problems from game theory, and car configuration.
The results are shown in Table 1 (more results are available
in (Dilkina, Gomes, & Sabharwal, 2007)).

We generated graph coloring instances using the clique
hiding graph generator of Brockington & Culberson (1996)
with the probability of adding an edge equal to 0.5 and
with a hidden clique of size 4. All SAT-encoded instances
are unsatisfiable when the number of colors is 3. The
twelve variables representing color assignments to the four
vertices in the hidden 4-clique constitute a strong C{}-
backdoor, since any assignment of colors to these four ver-
tices will fail at least one coloring constraint. For problems
with 500 graph nodes, the C{}-backdoor comprises of only
0.8% of the variables. This domain illustrates how strong
Horn-backdoors and deletion RHorn-backdoors can be sig-
nificantly larger than backdoors w.r.t. empty clause detec-
tion; it also shows that deletion RHorn-backdoors (involv-
ing ≈ 17% of the variables) are considerably smaller than
strong Horn-backdoors (≈ 67%). We note that Satz finds

backdoors even smaller than the C{}-backdoor.

The MAP problem domain is a synthetic logistics plan-
ning domain for which the size of the strong UP-backdoors
is well understood (Hoffmann, Gomes, & Selman, 2007).
All MAP instances considered are unsatisfiable, encoding
one planning step less than the length of the optimal plan.
Hoffmann, Gomes, & Selman (2007) identify that certain
MAP instances (called asymmetric) have logarithmic size
DPLL refutations (and backdoors) which we consider here.
In this domain, strong Horn-backdoors and deletion RHorn-
backdoors are of comparable size and relatively large (37-
48%); as expected strong UP-backdoors are quite small. In-
terestingly, Satz solves these instances without any search at
all, implying that the smallest strong SATZ-backdoor is of
size 0.

The game theory instances encode the problem of decid-
ing the existence of an equilibrium strategy in a graphical
game. Here we consider binary games, where each player
has exactly two action choices, with payoff values generated
independently u.a.r. and interaction graphs that are drawn
from the Erdös-Rényi random graph model G(n, p). For
this domain, while strong Horn-backdoor sets and deletion
RHorn-backdoor involve ≈ 68% and ≈ 67% of the vari-
ables, respectively, strong SATZ-backdoors are surprisingly
small, close to 0% of the variables.

Finally, we also consider a real-world SAT benchmark
from product configuration. The instances encode prob-
lems from the validation and verification of automotive
product configuration data for the Daimler Chrysler’s Mer-
cedes car lines (Sinz, Kaiser, & Küchlin, 2003). We con-
sider a set of unsatisfiable instances available at http://www-
sr.informatik.uni-tuebingen.de/∼sinz/DC/. Here, while
strong Horn-backdoors vary between 10-25% of the vari-
ables, RHorn-backdoor sets are considerably smaller at 3-
8%. Strong SATZ-backdoors involve only 0-0.7% of the
variables.

5

5 Effect of Preprocessors
In recent years, there has been interest in developing prepro-
cessing techniques for SAT. Such preprocessing techniques
change the structure of the original formula and hence might
have an effect on the backdoor size. In this section, we in-
vestigate the effects that preprocessors have on the size of
strong backdoors in unsatisfiable instances.

We consider four of the more popular preprocessors
used with state-of-the-art SAT solvers: 3-Resolution, 2-
SIMPLIFY, HyPre, and SatELite. The simplification tech-
niques incorporated in these preprocessors are often more
sophisticated but also more time-consuming than standard
simplification techniques such as UP and PL, and hence are
not cost-effective as a propagation mechanism at each search
node. 3-Resolution is a preprocessing technique that has
been used in several SAT solvers, in particular Satz (Li &
Anbulagan, 1997). It resolves clauses of length at most 3
until saturation. 2-SIMPLIFY (Brafman, 2001) efficiently
implements and combines well-known 2-SAT techniques, a
limited form of hyper-resolution and a novel use of transitive
reduction to reduce formula size. HyPre (Bacchus & Winter,
2003) reasons on binary clauses similarly to 2-SIMPLIFY,
but also incorporates full resolution. Also, unit propagation
and equality reduction are applied until saturation. SatELite
(Eén & Biere, 2005) uses the rule of Variable Elimination by
Substitution.

When applied to structured formulas, as ones that appear
in real-world domains, preprocessors often lead to great re-
duction in the size of the instance and sometimes can even
solve the instance without search. In such cases, one can
consider the preprocessor as a sub-solver for which the in-
stance has a strong backdoor of size 0. In particular, the
instances from the four domains studied in the previous sec-
tion are often fully solved by the preprocessors themselves.
For example, 3-Resolution determines the graph coloring
problems, while the MAP domain is easy for HyPre and 3-
Resolution.

Here, we report results on the BF domain from SATLIB
(Hoos & Stützle, 2000), which consists of four benchmark
instances which test for bridge faults. Table 2 reports the
number of variables and clauses in the original formula and
in the resulting formulas after applying each of the prepro-
cessors. It also reports upper bounds on the minimum strong
backdoor size w.r.t. SATZ and UP+PL. For some instances,
certain preprocessors determine the unsatisfiability of the in-
stance. In this case, we report 0 in all entries. As an exam-
ple, the instance bf1355-075 is solved by SatELite, while it
has a strong SATZ-backdoor of size 179 after preprocessing
with 2-SIMPLIFY. The results in Table 2 show that none
of the preprocessors has a monotonic effect on the back-
door size in unsatisfiable instances. SatELite overall has the
most positive effect resulting in SATZ-backdoors of size 0 in
three of the instances, however it results in larger backdoors
for bf0432-007. On the other hand, 2-SIMPLIFY increases
the backdoor size for three of the instances, but reduces the
backdoor size to 8 for bf2670-001. The results seem to sug-
gest that while for some instances preprocessing simplifies
the formula, in some cases it obfuscates the hidden structure
of the problem and results in larger backdoors.

File vars clauses Satz UP+PL
bf0432-007.cnf 1040 3122 80 217
2-SIMPLIFY 1205 2501 67 168
HyPre 325 1383 65 156
SatELite 556 2216 132 219
3-Resolution 795 3499 30 191
bf1355-075.cnf 2180 5146 44 117
2-SIMPLIFY 2583 4134 179 221
HyPre 704 3124 82 103
SatELite 0 0 0 0
3-Resolution 1682 5557 72 158
bf1355-638.cnf 2177 5385 34 142
2-SIMPLIFY 2589 4861 104 152
HyPre 486 2010 37 50
SatELite 814 3134 0 5
3-Resolution 1461 4397 46 81
bf2670-001.cnf 1393 2926 16 32
2-SIMPLIFY 1592 1629 8 29
HyPre 0 0 0 0
SatELite 80 294 0 10
3-Resolution 1202 2970 7 19

Table 2: For each instance, we report upper bounds on the
strong backdoors size w.r.t. Satz and UP+PL for the orig-
inal formula and the formulas obtained after running 2-
SIMPLIFY, HyPre, SatELite, 3-Resolution.

6 Backdoors for Satisfiable Instances
Most of the previous work on strong backdoors has analyzed
unsatisfiable instances (e.g. Lynce & Marques-Silva, 2004;
Dilkina, Gomes, & Sabharwal, 2007). However, the notion
of strong backdoor is also relevant to satisfiable instances.
While for unsatisfiable instances, a strong backdoor set B is
such that for every assignment to B, the sub-solver derives
the empty clause when simplifying the formula. For satisfi-
able instances, a strong backdoor set B is such that for ev-
ery assignment to B, the sub-solver either derives the empty
clause (a subtree that contains no solutions), or it finds a so-
lution that is an extension of the assignment to B. On the
other hand, the notion of weak backdoors with respect to
satisfiable formulas captures, in a sense, a “witness” to the
satisfiability of the instance.

We study satisfiable instances with many solutions from
the Car Configuration domain (Sinz, Kaiser, & Küchlin,
2003). The results we obtain are very similar across in-
stances, and we report on one representative instance. Ta-
ble 3 suggests that for such satisfiable instances with many
solutions, the weak backdoor size is extremely small, while
the strong backdoor size is larger. A strong backdoor needs
to capture a solution for each backdoor assignment that does
not lead to an inconsistent formula. In addition, when con-
sidering strong backdoors, the choice of sub-solver has a
major effect. Interestingly, although in general UP is a
more effective propagation mechanism when deciding sat-
isfiability, when considering strong backdoors in the satisfi-
able car configuration instances, the PL sub-solver can result
in smaller backdoor sizes than those w.r.t. UP. Finally, with
the exception of SatELite, preprocessors do not significantly
affect the size of strong backdoors in satisfiable instances

6

of the Car Configuration domain. Notice that when PL is
added to UP, the strong backdoor sizes are dramatically re-
duced. This effect appears to be due to the fact that the pure
literal rule is de facto a “stream-liner” (Gomes & Sellmann,
2004; Gomes, Sabharwal, & Selman, 2006): as PL assigns
variables that appear as pure literals, it guarantees that the
satisfiability of the formula remains unchanged, while at the
same time potentially pruning several solutions.

C168 FW MT 28 vars clauses Satz UP+PL UP PL
Weak Original 1909 3808 18 22 423 357
Strong Original 1909 3808 153 156 500 388
Strong HyPre 536 2816 144 145 478 306
Strong SatELite 107 790 34 35 76 98
Strong 3-Resolution 228 1088 142 142 225 189
Strong 2-SIMPLIFY 1920 2618 118 118 478 285

Table 3: Weak and Strong backdoor sizes of a representa-
tive satisfiable Car Configuration instance of the original for-
mula and the formulas obtained after running preprocessors
2-SIMPLIFY, HyPre, SatELite, 3-Resolution.

7 Backdoors for Model Counting
The observation about strong backdoors w.r.t. PL acting as
a streamliner raises an interesting question about the rela-
tionship between strong backdoors and counting the number
of solutions of the given formula (the model counting prob-
lem). Consider a strong backdoor B for a formula F w.r.t.
a sub-solver S. One can count the number of solutions of
F , denoted #F , by adding up the solution counts #F [τ/B]

for each of the 2|B| truth assignments τ to the variables in
B. Suppose the sub-solver S has the property that there ex-
ists a poly-time algorithm S′ such that whenever a formula G
is determined by S as being satisfiable or unsatisfiable, then
S′ can compute #G. If this property holds, then B also acts
as a backdoor for the model counting problem: adding up
#F [τ/B] for all assignments τ to B yields a 2|B|nO(1) time
algorithm for computing #F .

Looking at various sub-solvers (and tractable classes) dis-
cussed so far, we may ask which ones have the above prop-
erty, i.e., strong backdoors for which of these sub-solvers
also act as backdoors for the model counting problem? Con-
sider the pure literal sub-solver. A strong PL backdoor B
may not necessarily help with model counting. For example,
if for some assignment τ to B, the simplified formula F [τ/B]
has only pure literals, the PL sub-solver sets all variables of
F [τ/B] to their respective pure values (possibly eliminat-
ing several solutions in the process) and immediately de-
clares the formula satisfiable. However, the model count-
ing problem for formulas with only pure literals (sometimes
called monotone formulas) is still #P-complete,1 making it
highly unlikely that a poly-time model counting algorithm
for such formulas exists. Thus, a small strong PL backdoor
does not necessarily yield an efficient way to compute #F .

1 #P-completeness for monotone 2CNF formulas can be proved
by a simple reduction from model counting for the Vertex Cover
problem.

Similarly, for 2CNF and Horn formulas, the correspond-
ing model counting problem is known to be #P-complete,
making strong backdoors for these classes (even with empty
clause detection added) not very useful for model counting.

On the other hand, strong backdoors B w.r.t. certain com-
mon sub-solvers do yield a 2|B|nO(1) time algorithm for com-
puting #F . We present the case for the unit propagation sub-
solver. Unlike PL, every variable assignment that UP makes
when B is set to τ is a logical implication of the residual
formula F [τ/B]. Hence, setting those variables by UP does
not affect the set of solutions of F [τ/B] as the UP sub-solver
proceeds to either derive an empty clause or simplify F [τ/B]
to the empty formula. In the former case, F [τ/B] clearly has
zero solutions. In the latter case, we claim that F [τ/B] has
exactly 2m solutions, where m is the number of variables of
F that are not in B and are also not assigned a value by UP.
This is seen by noting that every variable of F [τ/B] set by
UP must have been set that way in all solutions to F [τ/B],
and every variable not set by UP is in fact a “don’t care”
variable for F [τ/B] and can be set either way in all solu-
tions. This gives us a 2|B|nO(1) algorithm for computing #F
as claimed.

In related work, another class of formulas for which
counting is easy was considered by Nishimura, Ragde, &
Szeider (2006). The class consists of “cluster formulas”,
which are variable disjoint union of so-called “hitting for-
mulas”, where any two clauses of a hitting formula “clash”
in at least one literal. Again, given a backdoor B w.r.t. this
class of formulas, counting the number of solutions of the
original formula can be done in 2|B|nO(1) time. They also de-
scribe how to find such backdoors of bounded size (by relax-
ing to deletion backdoors which are not necessarily minimal
strong backdoor) in formulas with bounded cluster width.

8 Conclusions
The complexity of finding backdoors is influenced sig-
nificantly by the features of the underlying sub-solver or
tractable problem class. In particular, strong backdoor iden-
tification w.r.t. to Horn and 2CNF becomes harder than NP
(unless NP=coNP) as soon as the seemingly small feature of
empty clause detection is incorporated, but in practice it re-
duces the size of the backdoors dramatically. We show that
in addition to inconsistency detection, also the dynamic con-
straint propagation included in the definition of strong back-
door is key to capturing small backdoor sets. For the class
RHorn, we prove that “static” deletion backdoors can be ex-
ponentially larger than strong backdoors, in contrast with
the known results for 2CNF- and Horn-backdoors. We also
demonstrate that strong backdoors w.r.t. UP, PL, and UP+PL
can be substantially smaller than strong Horn-backdoors and
deletion RHorn-backdoors, and that Satz-Rand is remark-
ably good at finding small strong backdoors on a range of
unsatisfiable problem domains. Further, preprocessing does
not have a consistent effect on the strong backdoors size
for unsatisfiable formulas and can result in both larger and
smaller backdoors. On the other hand, preprocessing does
not seem to affect in any significant way the backdoor size
in satisfiable instances. In the context of strong backdoors

7

w.r.t satisfiable instances and model counting, we also con-
sider which sub-solvers lead to strong backdoors that also
act as backdoors for the model counting problem. In par-
ticular, while PL cannot help with identifying backdoors for
model counting, small strong UP-backdoors allow for effi-
ciently counting solutions.

Acknowledgments
This research was supported by IISI, Cornell University,
AFOSR Grant FA9550-04-1-0151.

References
Bacchus, F., and Winter, J. 2003. Effective preprocessing with

hyper-resolution and equality reduction. In SAT, 341–355.
Brafman, R. I. 2001. A simplifier for propositional formulas with

many binary clauses. In IJCAI, 515–522.
Brockington, M., and Culberson, J. C. 1996. Camouflaging in-

dependent sets in quasi-random graphs. In Johnson, D. S., and
Trick, M. A., eds., Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge, volume 26, 75–88. Amer-
ican Mathematical Society.

Chandru, V., and Hooker, J. N. 1992. Detecting embedded Horn
structure in propositional logic. Information Processing Letters
42(2):109–111.

Chen, H.; Gomes, C.; and Selman, B. 2001. Formal models of
heavy-tailed behavior in combinatorial search. In CP’01.

Dilkina, B.; Gomes, C. P.; and Sabharwal, A. 2007. Tradeoffs in
the complexity of backdoor detection. In Principles and Prac-
tice of Constraint Programming - CP 2007, 256–270.

Eén, N., and Biere, A. 2005. Effective preprocessing in sat through
variable and clause elimination. In SAT, 61–75.

Gomes, C. P., and Sellmann, M. 2004. Streamlined constraint
reasoning. In CP, 274–289.

Gomes, C. P.; Selman, B.; Crato, N.; and Kautz, H. 2000.
Heavy-tailed phenomena in satisfiability and constraint satisfac-
tion problems. J. Autom. Reason. 24(1-2):67–100.

Gomes, C. P.; Sabharwal, A.; and Selman, B. 2006. Model count-
ing: A new strategy for obtaining good bounds. In AAAI.

Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting Combina-
torial Search Through Randomization. In AAAI’98, 431–438.

Hoffmann, J.; Gomes, C.; and Selman, B. 2007. Structure and
problem hardness: Goal asymmetry and DPLL proofs in SAT-
based planning. Logical Methods in Computer Science 3(1:6).

Hoos, H. H., and Stützle, T. 2000. SATLIB: An Online Resource
for Research on SAT. In SAT’00. 283–292.

ILOG, SA. 2006. CPLEX 10.1 Reference Manual.
Kilby, P.; Slaney, J. K.; Thibaux, S.; and Walsh, T. 2005. Back-

bones and backdoors in satisfiability. In AAAI’05, 1368–1373.
Li, C. M., and Anbulagan. 1997. Heuristics based on unit propa-

gation for satisfiability problems. In IJCAI’97, 366–371.
Lynce, I., and Marques-Silva, J. 2004. Hidden structure in unsat-

isfiable random 3-SAT: An empirical study. In ICTAI’04.
Moskewicz, M. W.; Madigan, C. F.; Zhao, Y.; Zhang, L.; and Ma-

lik, S. 2001. Chaff: engineering an efficient SAT solver. In
DAC’01, 530–535.

Nishimura, N.; Ragde, P.; and Szeider, S. 2004. Detecting back-
door sets with respect to Horn and binary clauses. In SAT’04.

Nishimura, N.; Ragde, P.; and Szeider, S. 2006. Solving #SAT
using vertex covers. In SAT’06, 396–409.

Sinz, C.; Kaiser, A.; and Küchlin, W. 2003. Formal methods for
the validation of automotive product configuration data. Artifi-
cial Intelligence for Engr. Design, Analysis and Manufacturing
17(1):75–97. Special issue on configuration.

Szeider, S. 2005. Backdoor sets for dll subsolvers. J. Autom.
Reason. 35(1-3):73–88.

Williams, R.; Gomes, C.; and Selman, B. 2003a. Backdoors to
typical case complexity. In IJCAI’03, 1173–1178.

Williams, R.; Gomes, C.; and Selman, B. 2003b. On the connec-
tions between heavy-tails, backdoors, and restarts in combinato-
rial search. In SAT’03, 222–230.

8

