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In [3], SAT conflict analysis graphs were used to learn additional clauses, which
we refer to as back-clauses. These clauses may be viewed as enabling the powerful
notion of “probing”: Back-clauses make inferences that would normally have to
be deduced by setting a variable deliberately the other way and observing that
unit propagation leads to a conflict. We show that short-cutting this process can
in fact improve the performance of modern SAT solvers in theory and in practice.
Based on out numerical results, it is suprising that back-clauses, proposed over
a decade ago, are not yet part of standard clause-learning SAT solvers.

Back-Clauses. We assume familiarity with SAT conflict analysis [3, 4]. Figure 1
shows an example formula and its conflict graph derived after branching on (-1),
(+2), and (+3). A clause such as (1-2+5) in our notation may be thought of as
(x1∨¬x2∨x5). The corresponding first or rightmost UIP at the decision level is
literal (-10) and the standard clause learnt from this conflict is (-4+10). In [3] it
was found that, for any two consecutive UIPs at level L, we can infer that, under
some context given by the literals on tree levels < L, the left UIP implies the
right UIP. In our example, given 5, 7 implies -10. Written as a clause, this gives
(-5-7-10). It makes sense to add this “back-clause” because unit propagation is
incomplete and may in fact not be able to infer that, given 5, 10 implies -7.
In our example, we can also infer that, given 2, 3 implies 7, or (-2-3+7). Note
that these two clauses imply (-2-5-3-10), also under incomplete unit propagation.
Since back-clauses in general have smaller “contexts” than traditional nogoods
based on all UIPs, we conclude from the following proposition that adding all
back-clauses between adjacent UIPs at level L is, in general, strictly stronger
under unit propagation than adding all UIP nogoods at level L.

A. (1+4) B. (1-2+5)
C. (-2-3-6) D. (-3+6+7)
E. (-4+10+11) F. (-5-7+8)
G. (-5-7+9) H. (-8-9-10)
I. (10-11)
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Fig. 1. An Example Formula and its Conflict Graph
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Fig. 2. Cactus plot showing the maximum time (y-axis, in seconds) needed by MiniSat

with and without Back-Clauses to solve a given number of instances (x-axis). Left: SAT
Race 2010 benchmark. Right: SAT Competition 2011 benchmark.

Proposition 1. By adding the first UIP clause and back-clauses between every
two consecutive UIPs at level L, we enable unit propagation to make all infer-
ences that all traditional nogoods based on all UIPs at level L would.

Empirical Evaluation. We added back-clause lerning as part of version 2.2.0 of
MiniSat [5] and experimented with it on 2.3 GHz AMD Opteron 6134 machines
with eight 4-core CPUs and 64 GB memory, running Scientific Linux release
6.1. As benchmarks we use all of the application instances from the 2010 SAT
Race and the 2011 SAT Competition. Both MiniSat and MiniSat+BC (i.e., with
back-clauses on the decision level) were configured to first simplify the formula
using the SatELite preprocessor [2]. Figure 2 summarizes the results in terms of
the commonly used cactus plot metric. We observe that learning back-clauses is
clearly helpful for both benchmark sets, particularly for harder instances where
the benefits of learning additional clauses become most noticeable.

In conclusion, we rediscovered the idea of learning back-clauses during search,
first introduced in [3]. We showed that adding back-clauses is stronger than
adding no-goods for all UIPs. We hope that our experiemntal findings will help
this technique find its rightful place among modern SAT solving methods.
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